A subscription to JoVE is required to view this content. Sign in or start your free trial.
Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) can be a potential source of MSCs that differentiate into insulin-producing cells (IPCs). In this protocol, we provide detailed steps for the isolation and characterization of rat epididymal Ad-MSCs, followed by a simple, short protocol for the generation of IPCs from the same rat Ad-MSCs.
Mesenchymal stem cells (MSCs)-especially those isolated from adipose tissue (Ad-MSCs)-have gained special attention as a renewable, abundant source of stem cells that does not pose any ethical concerns. However, current methods to isolate Ad-MSCs are not standardized and employ complicated protocols that require special equipment. We isolated Ad-MSCs from the epididymal fat of Sprague-Dawley rats using a simple, reproducible method. The isolated Ad-MSCs usually appear within 3 days post isolation, as adherent cells display fibroblastic morphology. Those cells reach 80% confluency within 1 week of isolation. Afterward, at passage 3-5 (P3-5), a full characterization was carried out for the isolated Ad-MSCs by immunophenotyping for characteristic MSC cluster of differentiation (CD) surface markers such as CD90, CD73, and CD105, as well as inducing differentiation of these cells down the osteogenic, adipogenic, and chondrogenic lineages. This, in turn, implies the multipotency of the isolated cells. Furthermore, we induced the differentiation of the isolated Ad-MSCs toward the insulin-producing cells (IPCs) lineage via a simple, relatively short protocol by incorporating high glucose Dulbecco's modified Eagle medium (HG-DMEM), β-mercaptoethanol, nicotinamide, and exendin-4. IPCs differentiation was genetically assessed, firstly, via measuring the expression levels of specific β-cell markers such as MafA, NKX6.1, Pdx-1, and Ins1, as well as dithizone staining for the generated IPCs. Secondly, the assessment was also carried out functionally by a glucose-stimulated insulin secretion (GSIS) assay. In conclusion, Ad-MSCs can be easily isolated, exhibiting all MSC characterization criteria, and they can indeed provide an abundant, renewable source of IPCs in the lab for diabetes research.
Mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells, are among the most widely used cell types for regenerative medicine1,2. They are classified as adult stem cells and characterized by multilineage differentiation potential and self-renewal capacity3. MSCs can be isolated and obtained from various sources, including adipose tissue, bone marrow, peripheral blood, umbilical cord tissue and blood, hair follicles, and teeth4,5.
The isolation of stem cells from adipose tissue is seen as....
All experiments were carried out according to the approved guidelines, and all procedures were approved by the Ethical Committee of the Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt. The Ad-MSC isolation protocol was adopted from Lopez and Spencer, with modifications15.
1. Isolation of Ad-MSCs from rat epididymal fat pads
Isolation and characterization of Ad-MSCs
As shown in Figure 2, the isolated cells from adipose tissue showed a heterogeneous population of rounded and fibroblast-like cells starting from the next day of isolation (Figure 2A). 4 days post isolation, the fibroblast cells started to increase in number and size and grow as a homogenous population by passage 1 (Figure 2B,C). These cells continued .......
In this protocol, we managed to present a detailed protocol for the isolation of Ad-MSCs from rat epididymal fat and the differentiation of these Ad-MSCs into IPCs. In fact, rat epidydimal fat is an easily attainable source of adipose tissue for obtaining Ad-MSCs and does not require any special equipment, neither for collection nor for processing15,26,27. The isolated Ad-MSCs showed excellent culture expansion and exhibited all.......
All the co-authors declare no conflict of interests associated with this work.
We acknowledge Dr. Rawda Samir Mohamed, MSc, Veterinarian Specialist, Faculty of Pharmacy, The British University of Egypt (BUE) for helping with the dissection of the rats.
We also would like to acknowledge and appreciate the efforts of the Faculty of Mass Communication, The British University in Egypt (BUE) for the production and editing of the video of this manuscript.
We would like to thank Miss Fatma Masoud, MSc, Assistant Lecturer of English, The British University in Egypt (BUE) for the revision and English language proofreading of the manuscript.
This work was partially funded ....
Name | Company | Catalog Number | Comments |
Albumin, bovine serum Fraction V | MP Biomedicals | ||
Alcian Blue 8GX | Sigma-Aldrich, USA | A3157 | |
Alizarin Red S | Sigma-Aldrich, USA | A5533 | |
Ammonium hydroxide | Fisher Scientific, Germany | ||
Antibody for Rat CD90, FITC | Stem Cell Technologies | 60024FI | |
Bovine serum albumin | Sigma Aldrich | A3912 | |
Calcium Chloride | Fisher Scientific, Germany | ||
CD105 Monoclonal Antibody, FITC | Thermo Fisher Scientific, Invitrogen, USA | MA1-19594 | |
CD34 Polyclonal Antibody | Thermo Fisher Scientific, Invitrogen, USA | PA5-85917 | |
Chloroform | Fisher Scientific, USA | ||
Collagenase type I, powder | Gibco, Thermo Fisher, USA | 17018029 | |
D-Glucose anhydrous, extra pure | Fisher Scientific, Germany | G/0450/53 | |
Dimethyl sulfoxide (DMSO) | Fisher Scientific, Germany | BP231-100 | |
Dithizone staining | Sigma-Aldrich, USA | D5130 | |
DMEM - High Glucose 4.5 g/L | Lonza, Switzerland | 12-604F | |
DMEM - Low Glucose 1 g/L | Lonza, Switzerland | 12-707F | |
DMEM/F12 medium | Lonza, Switzerland | BE12-719F | |
DNAse/RNAse free water | Gibco Thermo Fisher, USA | 10977-035 | |
Ethanol absolute, Molecular biology grade | Sigma-Aldrich, Germany | 24103 | |
Exendin-4 | Sigma-Aldrich, Germany | E7144 | |
Fetal Bovine Serum (FBS) | Gibco Thermo Fisher, Brazil | 10270-106 | |
Formaldehyde 37% | Fisher Scientific | ||
Hydrochloric acid (HCl) | Fisher Scientific, Germany | ||
Isopropanol, Molecular biology grade | Fisher Scientific, USA | BP2618500 | |
L-Glutamine | Gibco Thermo Fisher, USA | 25030-024 | |
Magnesium Chloride (Anhydrous) | Fisher Scientific, Germany | ||
Mesenchymal Stem Cell Functional identification kit | R&D systems Inc., MN, USA | SC006 | |
Nicotinamide | Sigma-Aldrich, Germany | N0636 | |
Oil Red Stain | Sigma-Aldrich, USA | O0625 | |
Penicillin-Streptomycin-Amphotericin | Gibco Thermo Fisher, USA | 15240062 | |
Phosphate buffered saline, 1X, without Ca/Mg | Lonza, Switzerland | BE17-516F | |
Potassium Chloride | Fisher Scientific, Germany | ||
Rat Insulin ELISA Kit | Cloud-Clone Corp., USA | CEA682Ra | |
Sodium Bicarbonate | Fisher Scientific, Germany | ||
Sodium Chloride | Fisher Scientific, Germany | ||
Sodium Phosphate Dibasic (Anhydrous) | Fisher Scientific, Germany | ||
Sodium Phosphate Monobasic (Anhydrous) | Fisher Scientific, Germany | ||
SYBR Green Maxima | Thermo Scientific, USA | K0221 | |
Syringe filter, 0.2 micron | Corning, USA | 431224 | |
TRIzol | Thermo Scientific, USA | 15596026 | |
Trypan blue | Gibco Thermo Fisher, USA | 15250061 | |
Trypsin-Versene-EDTA, 1X | Lonza, Switzerland | CC-5012 | |
Verso cDNA synthesis kit | Thermo Scientific, USA | AB-1453/A | |
β-mercaptoethanol | Sigma-Aldrich, Germany | M3148 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved