Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, a protocol for the measurement of the non-heme iron content in animal tissues is provided, using a simple, well-established colorimetric assay that can be easily implemented in most laboratories.

Abstract

Iron is an essential micronutrient. Both iron overload and deficiency are highly detrimental to humans, and tissue iron levels are finely regulated. The use of experimental animal models of iron overload or deficiency has been instrumental to advance knowledge of the mechanisms involved in the systemic and cellular regulation of iron homeostasis. The measurement of total iron levels in animal tissues is commonly performed with atomic absorption spectroscopy or with a colorimetric assay based on the reaction of non-heme iron with a bathophenanthroline reagent. For many years, the colorimetric assay has been used for the measurement of the non-heme iron content in a wide range of animal tissues. Unlike atomic absorption spectroscopy, it excludes the contribution of heme iron derived from hemoglobin contained in red blood cells. Moreover, it does not require sophisticated analytical skills or highly expensive equipment, and can thus be easily implemented in most laboratories. Finally, the colorimetric assay can be either cuvette-based or adapted to a microplate format, allowing higher sample throughput. The present work provides a well-established protocol that is suited for the detection of alterations in tissue iron levels in a variety of experimental animal models of iron overload or iron deficiency.

Introduction

Iron is an essential micronutrient, required for the function of proteins involved in crucial biological processes such as oxygen transport, energy production, or DNA synthesis. Importantly, both iron excess and iron deficiency are highly detrimental to human health, and tissue iron levels are finely regulated. Abnormal dietary iron absorption, iron-deficient diets, repeated blood transfusions, and chronic inflammation are common causes of iron-associated disorders that affect billions of people worldwide1,2,3.

Experimental animal models of iron ov....

Protocol

C57BL/6 mice were commercially purchased and hepcidin-null (Hamp1−/−) mice on a C57BL/6 background8 were a kind gift from Sophie Vaulont (Institut Cochin, France). Animals were housed at the i3S animal facility under specific pathogen-free conditions, in a temperature- and light-controlled environment, with free access to standard rodent chow and water. European sea bass (Dicentrarchus labrax) were purchased from a commercial fish farm and housed at the ICB.......

Representative Results

Cuvette versus 96-well microplate comparison
The measurement of tissue non-heme iron by reaction with a bathophenanthroline reagent originally described by Torrance and Bothwell5,6 relies on the use of a spectrophotometer for absorbance reading. Hence, the volumes employed in the chromogen reaction are compatible with the size of a regular spectrophotometer cuvette. The present work describes a method adaptation in which the chromogen react.......

Discussion

A protocol for the measurement of the non-heme iron content in animal tissues is provided, using an adaptation of the bathophenanthroline-based colorimetric assay originally described by Torrance and Bothwell5,6. The critical steps of the method are tissue sample drying; protein denaturation and release of inorganic iron by acid hydrolysis; reduction of ferric (Fe3+) iron to the ferrous state (Fe2+) in the presence of the reducing agent thio.......

Acknowledgements

This work was funded by National Funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the project UIDB/04293/2020.

....

Materials

NameCompanyCatalog NumberComments
96 well UV transparent plateSarstedt82.1581.001
Analytical balanceKernABJ 220-4M
Anhydrous sodium acetateMerck106268
Bathophenanthroline sulfonate (4,7-Diphenyl-1,10-phenantroline dissulfonic acid)Sigma-AldrichB1375
C57BL/6 mice (Mus musculus)Charles River Laboratories
Carbonyl iron powder, ≥99.5%Sigma-Aldrich44890
Disposable cuvettes in polymethyl methacrylate (PMMA)VWR634-0678P
Double distilled, sterile waterB. Braun0082479E
Fluorescence microplate readerBioTek InstrumentsFLx800
Hydrochloric acid, 37%Sigma-Aldrich258148
Microwave digestion oven and white teflon cupsCEMMDS-2000
Nitric acidFisher Scientific15687290
OvenBinderED115
Rodent chowHarlan Laboratories2014STeklad Global 14% Protein Rodent Maintenance Diet containing 175 mg/kg iron
Sea bass (Dicentrarchus labrax)Sonrionansa
Sea bass feedSkrettingL-2 Alterna 1P
Single beam UV-Vis spectrophotometerShimadzuUV mini 1240
Thioglycolic acidMerck100700
Trichloroacetic acidMerck100807

References

  1. Muckenthaler, M. U., Rivella, S., Hentze, M. W., Galy, B. A red carpet for iron metabolism. Cell. 168, 344-361 (2017).
  2. Pagani, A., Nai, A., Silvestri, L., Camaschella, C. Hepcidin and anemia: A tight relationship. Frontiers in Physiology.....

Explore More Articles

Tissue Non heme IronBathophenanthroline based Colorimetric AssayMicroplate FormatIron OverloadIron DeficiencyTissue DigestionAcid ExtractionChromogen ReactionSpectrophotometric Measurement

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved