A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Stimulated Raman scattering (SRS) microscopy is a powerful, nondestructive, and label-free imaging technique. One emerging application is stimulated Raman histology, where two-color SRS imaging at the protein and lipid Raman transitions are used to generate pseudo-hematoxylin and eosin images. Here, we demonstrate a protocol for real-time, two-color SRS imaging for tissue diagnosis.
Stimulated Raman scattering (SRS) microscopy has emerged as a powerful optical imaging technique for tissue diagnosis. In recent years, two-color SRS has been shown to be able to provide hematoxylin and eosin (H&E)-equivalent images that allow fast and reliable diagnosis of brain cancer. Such capability has enabled exciting intraoperative cancer diagnosis applications. Two-color SRS imaging of tissue can be done with either a picosecond or femtosecond laser source. Femtosecond lasers have the advantage of enabling flexible imaging modes, including fast hyperspectral imaging and real-time, two-color SRS imaging. A spectral-focusing approach with chirped laser pulses is typically used with femtosecond lasers to achieve high spectral resolution.
Two-color SRS acquisition can be realized with orthogonal modulation and lock-in detection. The complexity of pulse chirping, modulation, and characterization is a bottleneck for the widespread adoption of this method. This article provides a detailed protocol to demonstrate the implementation and optimization of spectral-focusing SRS and real-time, two-color imaging of mouse brain tissue in the epi-mode. This protocol can be used for a broad range of SRS imaging applications that leverage the high speed and spectroscopic imaging capability of SRS.
Traditional tissue diagnostics rely on staining protocols followed by examination under an optical microscope. One common staining method used by pathologists is H&E staining: hematoxylin stains cell nuclei a purplish blue, and eosin stains the extracellular matrix and cytoplasm pink. This simple staining remains the gold standard in pathology for many tissue diagnoses tasks, particularly cancer diagnosis. However, H&E histopathology, particularly the frozen sectioning technique used in an intraoperative setting, still has limitations. The staining procedure is a laborious process involving tissue embedding, sectioning, fixation, and staining....
All experimental animal procedures were conducted with 200 µm, fixed, sectioned mouse brains, in accordance with the protocol (# 4395-01) approved by the Institute of Animal Care and Use Committee (IACUC) of the University of Washington. Wild-type mice (C57BL/6J strain) are euthanized with CO2. Then, a craniotomy is performed to extract their brains for fixation in 4% paraformaldehyde in phosphate-buffered saline. The brains are embedded in a 3% agarose and 0.3% gelatin mixture and sectioned into 200 μm-thick slices by a vibratome.
1. Initial alignment
NOTE: Ensure that the bea....
Optimizing spectral resolution:
Dispersion through a material is affected by the dispersive medium (length and material) and wavelength. Changing the dispersion rod length affects the spectral resolution and the signal size. It is a give-and-take relationship that can be weighed differently depending on the application. The rods stretch out the beam pulse from being wide in frequency and narrow in time to being narrow in frequency and broad in time. Figure 7 shows the .......
The two-color SRS imaging scheme presented in this protocol hinges on the proper implementation of one-color SRS imaging. In one-color SRS imaging, the critical steps are spatial alignment, temporal alignment, modulation depth, and phase shift. Spatially combining the two beams is accomplished by a dichroic mirror. Several steering mirrors are used for fine adjustment when sending the beams to the dichroic mirror. Once the beams are combined with the dichroic mirror, spatial alignment can be confirmed by picking off the .......
The authors declare that there are no conflicts of interest.
This study was supported by NIH R35 GM133435 to D.F.
....Name | Company | Catalog Number | Comments |
100 mm Achromatic Lens | THORLABS | AC254-100-B | Broadband, 650 - 1,050 nm, achromatic lens focal length, 100 mm |
20 MHz bandpass filter | Minicircuits | BBP-21.4+ | Lumped LC Band Pass Filter, 19.2 - 23.6 MHz, 50 Ω |
200 mm Achromatic Lens | THORLABS | AC254-200-B | Broadband, 650 - 1,050 nm, achromatic lens focal length, 200 mm |
Achromatic Half Waveplate | Union Optic | WPA2210-650-1100-M25.4 | Broadband half waveplate |
Achromatic Quarter Waveplate | Union Optic | WPA4210-650-1100-M25.4 | Broadband quarter waveplate |
Beam Sampler | THORLABS | BSN11 | 10:90 Plate Beamsplitter |
Dichroic Mirror | THORLABS | DMSP1000 | Other dichroics with a center wavelength around 1,000 nm can be used. |
DMSO (Dimethyl sulfoxide) | Sigma Aldrich | 472301 | Solvent for calibration of Raman shift. Other solvents with known Raman peaks can be used. |
Electrooptic Amplitude Modulator | THORLABS | EO-AM-NR-C1 | Two EOMs are needed for orthogonal modulation and dual-channel imaging. Resonant version is recommended so lower driving voltage can be used. |
False H&E Staining Script | Matlab | https://github.com/TheFuGroup/HE_Staining | |
Fanout Buffer | PRL-414B | Pulse Research Lab | 1:4 TTL/CMOS Fanout Buffer and Line Driver, for generating the EOM driving frequency and the reference to the lock-in |
Fast Photodiode | THORLABS | DET10A2 | Si Detector, 1 ns Rise Time |
Frequency Divider | PRL-220A | Pulse Research Lab | TTL Freq. Divider (f/2, f/4, f/8, f/16), for generating 20MHz from the laser output. |
Highly Dispersive Glass Rods | Union Optic | CYLROD01 | High dispersion H-ZF52A Rod lens 120 mm, SF11 Rod lens 100 mm |
Insight DS+ | Newport | Laser system capable of outputting two synchronzied pulsed lasers (one fixed beam at 1, 040 nm and one tunable beam, ranging from 680-1,300 nm) with a repetition rate of 80 MHz. | |
Lock-in Amplifier | Liquid Instruments | Moku Lab | Lock-in amplifier to extract SRS signal from the photodiode. A Zurich Instrument HF2LI or similar instrument can be used as well. |
Mirrors | THORLABS | BB05-E03-10 | Broadband Dielectric Mirror, 750 - 1,100 nm. Silver mirrors can also be used. |
Motorized Delay Stage | Zaber | X-DMQ12P-DE52 | Delay stage for fine control of the temporal overlap of the pump and the Stokes lasers. Any other motorized stage should work. |
Oil Immersion Condensor | Nikon | CSC1003 | 1.4 NA. Other condensers with NA>1.2 can be used. |
Oscilloscope | Tektronix | TDS7054 | Any other oscilloscope with 400 MHz bandwdith or higher should work. |
Phase Shifter | SigaTek | SF50A2 | For shifting the phase of the modulation frequency |
Photodiode | Hamamatsu Corp | S3994-01 | Silicon PIN diode with large area (10 x 10 cm2). Other diodes with large area and low capacitance can be used. |
Polarizing Beam Splitter | Union Optic | PBS9025-620-1000 | Broadband polarizing beamsplitter |
Refactive Index Database | refractiveindex.info | ||
Retro-reflector | Edmund Optics | 34-408 | BBAR Right Angle Prism. Other prisms or retroreflector can be used. |
RF Power Amplifier | Minicircuits | ZHL-1-2W+ | Gain Block, 5 - 500 MHz, 50 Ω |
Scan Mirrors | Cambridge Technologies | 6215H | We used a 5mm mirror set with silver coating |
ScanImage | Vidrio | ScanImage Basic | Laser scanning microscope control software |
Shortpass Filter | THORLABS | FESH1000 | 25.0 mm Premium Shortpass Filter, Cut-Off Wavelength: 1,000 nm. For efficient suppression of the Stokes, two filters may be necessary. |
Upright Microscope | Nikon | Eclipse FN1 | Any other microscope frame can be used. If a laser scanning microscope is available, it can be used directly. Otherwise, a galvo scanner and scan lens needed to be added to the microscope. |
Water Immersion Objective | Olympus | XLPLN25XWMP2 | The multiphoton 25X Objective has a NA of 1.05. Other similar objectives can be used. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved