A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Engineering
Ice on road surfaces can lead to a significant decrease in the friction coefficient, thus endangering driving safety. However, there are still no studies that provide exact friction coefficient values for pavements covered in ice, which is detrimental to both road design and the selection of winter road maintenance measures. Therefore, this article presents an experimental method to determine the friction coefficient of icy road surfaces in the winter. A British portable tester (BPT), also known as a pendulum friction coefficient meter, was employed for the experiment. The experiment was divided into the following five steps: the preparation of the equipment, the calculation and analysis of the snowfall, equipment calibration, friction coefficient determination, and data analysis. The accuracy of the final experiment is directly affected by the equipment accuracy, which is described in detail. Moreover, this article suggests a method for calculating the ice thickness for corresponding amounts of snowfall. The results illustrate that even patchy ice formed by very light snowfall may lead to a significant decrease in the friction coefficient of the pavement, thus endangering driving safety. Additionally, the friction coefficient is at its peak when the ice thickness reaches 5 mm, meaning protection measures should be taken to avoid the formation of such ice.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved