A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Biology
* These authors contributed equally
Recent discoveries have revealed that cells perform direct, long-range, intercellular transfer via nano-scale, actin-membrane conduits, namely "tunneling nanotubes" (TNTs). TNTs are defined as open-ended, lipid bilayer-encircled membrane extensions that mediate continuity between neighboring cells of diameters ranging between 50 nm and 1 µm. TNTs were demonstrated initially in neuronal cells, but successive studies have revealed the existence of TNTs in several cell types and diseases, such as neurodegenerative diseases, viral infections, and cancer. Several studies have referred to close-ended, electrically coupled membrane nanostructures between neighboring cells as TNTs or TNT-like structures.
The elucidation of ultrastructure in terms of membrane continuity at the endpoint is technically challenging. In addition, studies on cell-cell communication are challenging in terms of the characterization of TNTs using conventional methods due to the lack of specific markers. TNTs are primarily defined as F-actin-based, open-ended membrane protrusions. However, one major limitation is that F-actin is present in all types of protrusions, making it challenging to differentiate TNTs from other protrusions. One of the notable characteristics of F-actin-based TNTs is that these structures hover between two cells without touching the substratum. Therefore, distinct F-actin-stained TNTs can conveniently be distinguished from other protrusions such as filopodia and neurites based on their hovering between cells.
We have recently shown that the internalization of oligomeric amyloid-β1-42 (oAβ) via actin-dependent endocytosis stimulates activated p21-activated kinase-1 (PAK1), which mediates the formation of F-actin-containing TNTs coexpressed with phospho-PAK1 between SH-SY5Y neuronal cells. This protocol outlines a 3D volume analysis method to identify and characterize TNTs from the captured z-stack images of F-actin- and phospho-PAK1-immunostained membrane protrusions in oAβ-treated neuronal cells. Further, TNTs are distinguished from developing neurites and neuronal outgrowths based on F-actin- and β-III tubulin-immunostained membrane conduits.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved