A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Immunology and Infection
* These authors contributed equally
Adenoviral vectors have been used as a gene transfer tool in gene therapy for more than three decades. Here, we introduce a protocol to construct an adenoviral vector by manipulating the genomic DNA of wild-type HAdV-7 by using a DNA assembly method. First, an infectious clone of HAdV-7, pKan-Ad7, was generated by fusing the viral genomic DNA with a PCR product from plasmid backbone, comprising of the kanamycin-resistant gene and the origin of replication (Kan-Ori), through DNA assembly. This was done by designing a pair of PCR primers, that contained ~25 nucleotides of the terminal sequence of HAdV-7 inverted terminal repeat (ITR) at the 5' end, a non-cutter restriction enzyme site for HAdV-7 genome in the middle, and a template-specific sequence for PCR priming at the 3' end. Second, an intermediate plasmid-based strategy was employed to replace the E3 region with transgene-expressing elements in the infectious clone to generate an adenoviral vector. Briefly, pKan-Ad7 was digested with dual-cutter restriction enzyme Hpa I, and the fragment containing the E3 region was ligated to another PCR product of plasmid backbone by Gibson assembly to construct an intermediate plasmid pKan-Ad7HpaI. For convenience, restriction-assembly was used to designate the plasmid cloning method of combined restriction digestion and assembly. Using restriction-assembly, the E3 genes in pKan-Ad7HpaI was replaced with a green fluorescent protein (GFP) expression cassette, and the modified E3 region was released from the intermediate plasmid and restored to the infectious clone to generate an adenoviral plasmid pKAd7-E3GFP. Finally, pKAd7-E3GFP was linearized by Pme I digestion and used to transfect HEK293 packaging cells to rescue recombinant HAdV-7 virus. To conclude, a DNA assembly-based strategy was introduced here for constructing adenoviral vectors in general laboratories of molecular biology without the need of specialized materials and instruments.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved