Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The protocol describes a step-by-step method to set up an ex vivo ovine wounded skin model infected with Staphylococcus aureus. This high-throughput model better simulates infections in vivo compared with conventional microbiology techniques and presents researchers with a physiologically relevant platform to test the efficacy of emerging antimicrobials.

Abstract

The development of antimicrobials is an expensive process with increasingly low success rates, which makes further investment in antimicrobial discovery research less attractive. Antimicrobial drug discovery and subsequent commercialization can be made more lucrative if a fail-fast-and-fail-cheap approach can be implemented within the lead optimization stages where researchers have greater control over drug design and formulation. In this article, the setup of an ex vivo ovine wounded skin model infected with Staphylococcus aureus is described, which is simple, cost-effective, high throughput, and reproducible. The bacterial physiology in the model mimics that during infection as bacterial proliferation is dependent on the pathogen's ability to damage the tissue. The establishment of wound infection is verified by an increase in viable bacterial counts compared to the inoculum. This model can be used as a platform to test the efficacy of emerging antimicrobials in the lead optimization stage. It can be contended that the availability of this model will provide researchers developing antimicrobials with a fail-fast-and-fail-cheap model, which will help increase success rates in subsequent animal trials. The model will also facilitate the reduction and refinement of animal use for research and ultimately enable faster and more cost-effective translation of novel antimicrobials for skin and soft tissue infections to the clinic.

Introduction

Skin infections are an important global issue, with large economic costs to healthcare providers around the world. The development of multidrug resistance and biofilm formation by pathogens plays a key role in the prevalence of non-healing wounds1,2,3,4. As a result of this, skin and soft tissue infections are one of the more common reasons for extended hospitalization and subsequent readmission5. Delays in wound healing are costly for both the patient and healthcare providers, with some estimates suggesting around 6.....

Protocol

Lambs' heads from the R.B Elliott and Son Abattoir were used as the source of skin samples in this project. All lambs were slaughtered for consumption as food. Instead of discarding the heads, these were repurposed for research. Ethics approval was not required as the tissue was sourced from waste discarded from abattoirs.

1. Sterilization

  1. Disinfect forceps prior to collection of the heads by taking clean forceps and performing dry heat sterilization in an oven.......

Representative Results

The identification of a route to sterilize the skin before setting up the wound infection model was challenging. The challenge lay in sterilizing the skin without damaging the different skin layers, which may then go on to have unintended consequences in the outcome of infection. To identify an appropriate sterilization regime, different treatments were tried for varying lengths of time, as outlined in Table 1. Contamination was recorded as the development of turbidity after 48 h in the MK medium used to.......

Discussion

The development of antimicrobials is an important but expensive venture that is estimated to cost around $1 billion and take around 15 years to complete. Over 90% of antimicrobial drug discovery and preclinical studies of antimicrobial drug efficacy are carried out by academic researchers and small to medium companies with typically less than 50 employees22. These teams are very financially constrained, which makes the failure of lead molecules in later stages of translational research calamitous........

Acknowledgements

The authors would like to thank EPSRC (EP/R513313/1) for funding. The authors would like to also thank R.B Elliot and Son Abattoir in Calow, Chesterfield, for providing lambs' heads and for being so accommodating in the early stages of the project, Kasia Emery for her support throughout the development of this protocol, and Fiona Wright from the Department of Infection, Immunity and Cardiovascular Disease at the University of Sheffield for processing the histology samples and being so incredibly helpful throughout this project.

....

Materials

NameCompanyCatalog NumberComments
24 Well Companion PlateSLS 353504
4 mm Biopsy PunchWilliams MedicalD7484
50 ml centrifuge tubesFisher Scientific 10788561
8 mm Biopsy PunchWilliams MedicalD7488
Amphotericin B solution, sterileSigma A2942
Colour Pro Style Cordless Hair ClipperWahl9639-2117XHair Clippers
Dual Oven IncubatorSLSOVe1020Sterilising oven
Epidermal growth factor SLSE5036-200UG
EthanolHoneywell458600-2.5L
F12 HAMSigmaN4888
Foetal bovine serum Labtech InternationalCA-115/500
ForcepsFisher Scientific15307805
Hair Removal CreamVeetNot applicable
Heracell VIOS 160iThermo Scientific15373212 Tissue culture incubator
Heraeus Megafuge 16RVWR521-2242Centrifuge
Homogenizer 220, HandheldFisher Scientific15575809
Homogenizer 220, plastic blending conesFisher Scientific 15585819
Insert Individual 24 well 0.4um membraneVWR International353095
Insulin, recombinant HumanSLS91077C-1G
Medium 199 (MK media)SigmaM0393
Microplate, cell culture Costar 96 wellFisher Scientific10687551
MultitronInforsNot applicableBacterial incubator
PBS tabletsSigma P4417-100TAB
Penicillin-StreptomycinSLS P0781
Plate sealsFisher ScientificESI-B-100
Safe 2020Fisher Scientific1284804Class II microbiology safety cabinet
Scalpel blade number 15Fisher ScientificO305
Scalpel Swann MortonFisher Scientific11849002
Sodium bicarbonateSigmaS5761-1KG
Toothed Allis Tissue ForcepsRocialleRSPU500-322
Tryptic Soy AgarMerck Life Science UK Limited14432-500G-F
Tryptic Soy BrothMerck Life Science UK Limited41298-500G-F
Vimoba TabletsQuip LabsVMTAB75BX

References

  1. Claeys, K. C., et al. Novel application of published risk factors for methicillin-resistant S. aureus in acute bacterial skin and skin structure infections. International Journal of Antimicrobial Agents. 51 (1), 43-46 (2018).
  2. Rahim, K., et al.

Explore More Articles

Ovine Skin Wound ModelHigh throughput Ex VivoAntimicrobial EfficacyTopical AntimicrobialsWound InfectionsContaminationAseptic TechniqueTissue ProcessingSkin SampleChlorine Dioxide SolutionSterile PBSAir liquid Interface

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved