A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The structural ensemble of monomeric alpha-synuclein affects its physiological function and physicochemical properties. The present protocol describes how to perform millisecond hydrogen/deuterium-exchange mass spectrometry and subsequent data analyses to determine conformational information on the monomer of this intrinsically disordered protein under physiological conditions.

Abstract

Alpha-synuclein (aSyn) is an intrinsically disordered protein whose fibrillar aggregates are abundant in Lewy bodies and neurites, which are the hallmarks of Parkinson's disease. Yet, much of its biological activity, as well as its aggregation, centrally involves the soluble monomer form of the protein. Elucidation of the molecular mechanisms of aSyn biology and pathophysiology requires structurally highly resolved methods and is sensitive to biological conditions. Its natively unfolded, meta-stable structures make monomeric aSyn intractable to many structural biology techniques. Here, the application of one such approach is described: hydrogen/deuterium-exchange mass spectrometry (HDX-MS) on the millisecond timescale for the study of proteins with low thermodynamic stability and weak protection factors, such as aSyn. At the millisecond timescale, HDX-MS data contain information on the solvent accessibility and hydrogen-bonded structure of aSyn, which are lost at longer labeling times, ultimately yielding structural resolution up to the amino acid level. Therefore, HDX-MS can provide information at high structural and temporal resolutions on conformational dynamics and thermodynamics, intra- and inter-molecular interactions, and the structural impact of mutations or alterations to environmental conditions. While broadly applicable, it is demonstrated how to acquire, analyze, and interpret millisecond HDX-MS measurements in monomeric aSyn.

Introduction

Parkinson's disease (PD) is a neurodegenerative illness affecting millions of people worldwide1. It is characterized by the formation of cytoplasmic inclusions known as Lewy bodies and Lewy neurites in the brain's substantia nigra pars compacta region. These cytoplasmic inclusions have been found to contain aggregates of the intrinsically disordered protein aSyn2. In PD and other synucleinopathies, aSyn transforms from a soluble disordered state into an insoluble, highly structured diseased state. In its native form, monomeric aSyn adopts a wide range of conformations stabilized by long-range electrostatic intera....

Protocol

1. Protein expression and purification of aSyn

  1. Prepare aSyn following a previously published report9.
  2. Dialyze into a safe storage buffer (e.g., Tris, pH 7.2 ).
  3. If required, concentrate the sample (e.g., spin filter microcentrifuge tubes using 3 kDa MWCO, 14,000 x g for approximately 10-30 min, see Table of Materials).
    NOTE: It is advised not to concentrate excessively. The integrity of the monomer ensemble has not been verified beyond 25 µM.
  4. Aliquot and store at −80 °C
    ​NOTE: The aSyn monomer protein is stable for up to 1 yea....

Results

Due to its intrinsically disordered nature, it is difficult to capture the intricate structural changes in aSyn at physiological pH. HDX-MS monitors isotopic exchange at backbone amide hydrogens, probing the protein conformational dynamics and interactions. It is one of the few techniques to acquire this information at high structural and temporal resolutions. This protocol is broadly applicable to a wide range of proteins and buffer conditions, and this is exemplified by the measurement of the exchange kinetics of aSyn .......

Discussion

In the present article, the following procedures are described: (1) performing peptide mapping experiments on monomeric aSyn to obtain the highest sequence coverage, (2) acquiring millisecond HDX-MS data on monomeric aSyn under physiological conditions, and (3) performing data analysis and interpretation of the resulting HDX-MS data. The provided procedures are generally simple to execute, each labeling experiment typically lasts only around 8 h for three replicates and eight timepoints, and the mapping experiment lasts .......

Disclosures

The authors declare no competing interests.

Acknowledgements

NS is funded by the University Council Diamond Jubilee Scholarship. JJP is supported by a UKRI Future Leaders Fellowship [Grant number: MR/T02223X/1].

....

Materials

NameCompanyCatalog NumberComments
1 × 100 mm ACQUITY BEH 1.7 μm C18 column Waters Corporation186002346Analytical column
Acetonitrile HPLC grade >99.9% HiPerSolvVWR20060.420For LC mobile phases
CaCl2Sigma AldrichC5670Salt for HDX buffers
ChronosAxel Semrau (Purchased from Waters Corporation)667006090Scheduling software to enable multiple HDX-MS sample injections automatically. Alternative software is available from other vendors e.g. HDXDirector or LEAP Shell
Deuterium chlorideGoss Scientific (Cambridge Isotope Laboratories)DLM-2-50For HDX labelling buffers
Deuterium oxide (99.9% D2O)Goss Scientific (Cambridge Isotope Laboratories)DLM-4Deuterated water
DynamX 3.0Waters Corporation176016027Isotopic assignment and deuterium incorporation calculation
Enzymate BEH Pepsin ColumnWaters Corporation186007233Pepsin digestion column
Formic Acid, 99.0% LC/MS GradeFisher Scientific10596814For LC mobile phases
Guanidinium hydrochlorideSigma AldrichRDD001-500GChaotrope/Denaturant
HDfleXUniversity of ExeterN/Ahttps://ore.exeter.ac.uk/repository/handle/10871/127982
KClSigma AldrichP3911Salt for HDX buffers
LEAP HDX-2 CTC PAL sampling robotWaters Corporation725000637Autosampler robot
Leucine enkephalinWaters Corporation186006013For mass spectrometry lockspray calibration.
MassLynxWaters Corporation667004007Software controlling inlet methods and mass spectrometer
Maximum recovery vialsWaters Corporation600000670CV100 pack including caps - used for quench tray in LEAP HDX-2
MgCl2Sigma AldrichM8266Salt for HDX buffers
Millipore 0.22 µm syringe filtersMilliporeN9CA7069BSyringe filters
ms2minApplied Photophysics LtdN/Afast-mix quench-flow millisecond hdx instrument
NaClSigma AldrichS9888Salt for HDX buffers
Peltier temperature controllerLEAP Technologies Inc.HP115-COOL/DPeltier controller to set precise temperature of chambers in the LEAP robot.
ProteinLynx Global Server 3.0Waters Corporation715001030Peptide identification software. Alternative software is available from other vendors.
Reagent pot capsWaters Corporation186004632100 pack
Reagent pots for LEAP HDX-2Waters Corporation186001420100 pack excluding caps - used for buffers in LEAP HDX-2
Sodium deuteroxide (99.5% in D2O)Goss Scientific (Cambridge Isotope Laboratories)DLM-57For HDX labelling buffers
Spin filter microcentrifuge tubes (3 kDa MWCO)Amicon (Merck Sigma Aldrich)UFC5003Micro centrifuge tubes to concentrate protein. This facilitates buffer exchange and accurate sample loading for HDX-MS experiments.
Synapt G2-Si mass spectrometerWaters Corporation176850035Mass spectrometer
Total recovery vialsWaters Corporation600000671CV100 pack including caps - used for labelling tray in LEAP HDX-2
Tris-HClSigma AldrichT3253-250GBuffer
Trizma baseSigma AldrichT60040-B2005Buffer
UreaSigma AldrichU5378-1KGChaotrope/Denaturant
VanGuard 2.1 x 5 mm ACQUITY BEH C18 column Waters Corporation186004623Trap desalting column

References

  1. Dorsey, E. R., et al. regional, and national burden of Parkinson's disease, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 17 (11), 939-953 (2018).
  2. Breydo, L., Wu, J. W., Uversky, V. N.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Alpha synucleinHydrogen deuterium ExchangeMass SpectrometryIntrinsically Disordered ProteinsPeptide MappingSample PreparationAutosamplerHDX RoboticsQuench BufferPeptide Coverage MapFast HDX Prototype InstrumentHDX Data Analysis Software

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved