Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

IL-9-expressing T and ILC2 cells are induced during N. brasiliensis infection, yet their characterization has been largely overlooked in the infected intestine due to their low frequency and differential kinetics. This protocol describes the isolation of these cells from different target organs and confirmation of their identity via flow cytometry at different infection stages.

Abstract

IL-9 is a pleiotropic cytokine associated with various processes, including antitumor immunity, induction of allergic pathologies, and the immune response against helminth infections, where it plays an important role in the expulsion of the parasite. In a murine model of Nippostrongylus brasiliensis infection, IL-9 is produced mainly by CD4+ T lymphocytes and innate lymphoid cells found in the lung, small intestine, and draining lymph nodes. Given the technical difficulties involved in the intracellular staining of IL-9, as well as the complexity of isolating hematopoietic cells from the small intestine upon infection, there is a pressing need for a comprehensive but straightforward protocol to analyze the expression of IL-9 in different lymphoid and non-lymphoid tissues in this model. The protocol described here outlines the kinetics of IL-9 produced by CD4+ T cells and innate lymphoid cells in the lung and small intestine, the main organs targeted by N. brasiliensis, as well as in the mediastinal and mesenteric lymph nodes, throughout the infection. In addition, it details the number of larvae needed for infection, depending on the cell type and organ of interest. This protocol aims to assist in the standardization of assays to save time and resources by offering the opportunity to focus on the specific cells, organs, and disease stages of interest in the N. brasiliensis infection model.

Introduction

Hookworms are intestinal parasites that infect approximately 700 million people worldwide, mostly in tropical areas in underdeveloped countries. High-intensity infections with Ancylostoma duodenale and Necator americanus, the most common hookworm parasites in humans, cause anemia and protein deficiency that can result in delayed growth and mental development1. N. americanus and the rodent parasite Nippostrongylus brasiliensis induce a prototypical type 2 immune response in their host and share similarities in their life cycle. Hence, the infection of mice with N. brasiliensis is the most commonly use....

Protocol

All animal experiments described here were approved by the Internal Committee for Animal Handling (CICUAL) of the Institute of Cellular Physiology, National Autonomous University of Mexico.

NOTE: A flowchart of the entire protocol is shown in Figure 1.

1. Housing of mice

  1. Use 8-10-week-old, female or male groups of mice, housed in animal facilities with constant temperature and humidity in 12 h light/dark cyc.......

Representative Results

Mice were subcutaneously injected with 200 L3 stage N. brasiliensis larvae, or with PBS for sham controls. The number of larvae used in this protocol was adjusted in order to isolate viable cells from the lungs, lymphoid tissue, and the small intestine, unlike previous reports where higher loads of worms were used to detect cells in lymphoid tissues and lungs only4. Lungs, mediastinal lymph nodes, mesenteric lymph nodes, and the small intestine were harvested at days 0, 4, 7, and 10 post-.......

Discussion

A complete understanding of intestinal parasite-host interactions and immune responses to helminth infection requires the identification and analysis of the different cell populations and effector molecules that are key for the induction of tissue remodeling and worm expulsion. Soil-transmitted helminth infections represent a big problem in developing countries throughout the world. However, until recently, a protocol that allowed for the analysis of rare cell populations present in the small intestine, the main organ af.......

Acknowledgements

The authors wish to acknowledge José Luis Ramos-Balderas for his technical support. This work was supported by the following grant to PLL from CONACYT (FORDECYT-PRONACE-303027). OM-P and EO-M received a fellowship from CONACYT (736162 and 481437, respectively). MCM-M received a fellowship from CONACYT (Estancias Posdoctorales por México 2022 (3)).

....

Materials

NameCompanyCatalog NumberComments
ACK bufferHomemade
Attune Nxt cytometerThermofisher
B220Biolegend103204
CD11bBiolegend101204
CD11c Biolegend117304
CD19 Biolegend115504
CD4Biolegend100404
CD4 (BV421)Biolegend100443
CD45.2Biolegend109846
CD8 Biolegend100703
CD90.2Biolegend105314
Collagenase DRoche11088866001
DNAse IInvitrogen18068015Specific activity: ≥10 000 units/mg   
Facs ARIA II sorterBD Biosciences
FACS Melody cell sorterBD Biosciences
Fc-BlockBiolegend101320
FcεRIeBioscience13589885
Fetal bovine serumGibco26140079
FlowJoFlowJoFlow cytometry analysis data software
Gr-1Tonbo305931
Hanks Balanced Salt Solution (HBSS)Homemade
IL-9biolegend514103
NK1.1 Biolegend108704
Nylon mesh ‎ lbaB07HYHHX5V
OptiPrep Density Gradient MediumSigmaD1556
Phosphate-buffered saline Homemade
RPMIGibco11875093
Siglec F Biolegend155512
StreptavidinBiolegend405206
TCR-β Biolegend109203
TCR-β (PE/Cy7)Biolegend109222
TCR-γδ Biolegend118103
Ter119Biolegend116204
Tricine buffer Homemade
Zombie Aqua Fixable Viability DyeBiolegend423101

References

  1. Centers for Disease Control and Prevention. . Parasites - Hookworm. , (2022).
  2. Camberis, M., Le Gros, G., Urban, J. Animal model of Nippostrongylus brasiliensis and Heligmosomoides polygyrus. Current Protocols in Immunology. , (2003).
  3. Me....

Explore More Articles

IL 9Nippostrongylus BrasiliensisLymphoid CellsInfection ModelIntracellular StainingCD4 T CellsInnate Lymphoid CellsLungSmall IntestineLymph NodesLarvaeStandardization

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved