JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Quantification of Circular RNAs Using Digital Droplet PCR

Published: September 16th, 2022

DOI:

10.3791/64464

1Institute of Life Sciences, 2School of Biotechnology, KIIT University

* These authors contributed equally

Abstract

Digital droplet polymerase chain reaction (dd-PCR) is one of the most sensitive quantification methods; it fractionates the reaction into nearly 20,000 water-in-oil droplets, and the PCR occurs in the individual droplets. The dd-PCR has several advantages over conventional real-time qPCR, including increased accuracy in detecting low-abundance targets, omitting reference genes for quantification, eliminating technical replicates for samples, and showing high resilience to inhibitors in the samples. Recently, dd-PCR has become one of the most popular methods for accurately quantifying target DNA or RNA for gene expression analysis and diagnostics. Circular RNAs (circRNAs) are a large family of recently discovered covalently closed RNA molecules lacking 5' and 3' ends. They have been shown to regulate gene expression by acting as sponges for RNA-binding proteins and microRNAs. Furthermore, circRNAs are secreted into body fluids, and their resistance to exonucleases makes them serve as biomarkers for disease diagnosis. This article aims to show how to perform divergent primer design, RNA extraction, cDNA synthesis, and dd-PCR analysis to accurately quantify specific circular RNA (circRNA) levels in cells. In conclusion, we demonstrate the precise quantification of circRNAs using dd-PCR.

Explore More Videos

Keywords Digital Droplet PCR

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved