A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This protocol outlines the generation of human immune system (HIS) mice for immuno-oncology studies. Instructions and considerations in the use of this model for testing human immunotherapeutics on human tumors implanted in this model are presented with an emphasis on characterizing the response of the human immune system to the tumor.
Reversing the immunosuppressive nature of the tumor microenvironment is critical for the successful treatment of cancers with immunotherapy drugs. Murine cancer models are extremely limited in their diversity and suffer from poor translation to the clinic. To serve as a more physiological preclinical model for immunotherapy studies, this protocol has been developed to evaluate the treatment of human tumors in a mouse reconstituted with a human immune system. This unique protocol demonstrates the development of human immune system (HIS, "humanized") mice, followed by implantation of a human tumor, either a cell-line derived xenograft (CDX) or a patient derived xenograft (PDX). HIS mice are generated by injecting CD34+ human hematopoietic stem cells isolated from umbilical cord blood into neonatal BRGS (BALB/c Rag2-/- IL2RγC-/- NODSIRPα) highly immunodeficient mice that are also capable of accepting a xenogeneic tumor. The importance of the kinetics and characteristics of the human immune system development and tumor implantation is emphasized. Finally, an in-depth evaluation of the tumor microenvironment using flow cytometry is described. In numerous studies using this protocol, it was found that the tumor microenvironment of individual tumors is recapitulated in HIS-PDX mice; "hot" tumors exhibit large immune infiltration while "cold" tumors do not. This model serves as a testing ground for combination immunotherapies for a wide range of human tumors and represents an important tool in the quest for personalized medicine.
Mouse cancer models are important for establishing basic mechanisms of tumor growth and immune escape. However, cancer treatment studies in mouse models have yielded finite translation to the clinic due to limited syngeneic models and species-specific differences1,2. The emergence of immune therapies as a dominant approach to control tumors has reiterated the need for an in vivo model with a functional human immune system. Advancements in human immune system mice (HIS mice) over the past decade have made it possible to study immuno-oncology in vivo in a wide variety of cancer types and immuno....
All animal work was performed under animal protocols approved by the University of Colorado Denver Institutional Animal Care and Use Committee (IACUC Protocols #00593 and #00021). All animal work was performed in accordance with the Office of Laboratory Animal Resources (OLAR), an accredited facility by the American Association for Laboratory Animal Care, at the University of Colorado Denver Anschutz Medical Campus. All human cord blood samples were obtained as donations from de-identified donors and are thus not subject to approval by the human research ethics committee.
NOTE: Compositions of all media and solutions mentioned in the protoc....
Following the flank tumor protocol and experimental timeline (Figure 1), the tumor growth and immune response to a targeted tyrosine kinase inhibitor (TKI) therapy and nivolumab combination treatment was studied in two distinct human colorectal cancer (CRC) PDXs. The TKI drugs have been studied in immunodeficient hosts to evaluate tumor growth only29. This model enabled the study of changes in the immune response of the TKI alone, and more importantly, in combination .......
Over the past 6 years, using our expertise in both immunology and humanized mice, our research team has developed a much needed preclinical model to test immunotherapies on a variety of human tumors3,7,30,31. This protocol emphasizes the consideration of the variability of the model, with special attention to the immunotherapy-centric human T cell populations. In this protocol, the generation o.......
None.
We would like to thank both the Animal Research Facility (OLAR) for their care of our mice, and the Flow Cytometry Shared Resource supported by the Cancer Center Support Grant (P30CA046934) at our institute for their immense help in all our work. We also acknowledge both Gail Eckhardt and Anna Capasso for our inaugural collaborations studying immunotherapies to human PDXs in our HIS-BRGS model. This study was supported in part by the National Institutes of Health P30CA06934 Cancer Center Support Grant with use of the PHISM (Pre-clinical Human Immune System Mouse Models) Shared Resource, RRID: SCR_021990 and Flow Cytometry Shared Resource, RRID: SCR_022035. T....
Name | Company | Catalog Number | Comments |
1 mL syringe w/needles | McKesson | 1031815 | |
15 mL tubes | Grenier Bio-One | 188271 | |
2-mercaptoethanol | Sigma | M6250 | |
50 mL tubes | Grenier Bio-One | 227261 | |
AutoMACS Pro Separator | Miltenyi | 130-092-545 | |
BD Golgi Stop Protein Transport Inhibitor with monensin | BD Bioscience | BDB563792 | |
BSA | Fisher Scientific | BP1600100 | |
Cell Stim Cocktail | Life Technologies | 509305 | |
Chill 15 Rack | Miltenyi | 130-092-952 | |
Cotton-plugged glass pipettes | Fisher Scientific | 13-678-8B | |
Cultrex Basement membrane extract | R&D Systems | 363200502 | |
Cytek Aurora | Cytek | ||
DNase | Sigma | 9003-98-9 | |
eBioscience FoxP3/Transcription Factor Staining Buffer Set | Invitrogen | 00-5523-00 | |
Embryonic Stemcell FCS | Gibco | 10439001 | |
Eppendorf Tubes; 1.5 mL volume | Grenier Bio-One | 616201 | |
Excel | Microsoft | ||
FBS | Benchmark | 100-106 500mL | |
Ficoll Hypaque | GE Healthcare | 45001752 | |
FlowJo Software | BD Biosciences | ||
Forceps - fine | Roboz Surgical | RS5045 | |
Forceps normal | Dumont | RS4919 | |
Formaldehyde | Fisher | F75P1GAL | |
Frosted Glass Slides | Corning | 1255310 | |
Gentlemacs C-Tubes | Miltenyi | 130-096-334 | |
GentleMACS Dissociator | Miltenyi | 130-093-235 | |
glass pipettes | DWK Life Sciences | 63A53 | |
Glutamax | Gibco | 11140050 | |
HBSS w/ Ca & Mg | Sigma | 55037C | |
HEPES | Corning | MT25060CI | |
IgG standard | Sigma | I2511 | |
IgM standard | Sigma | 401108 | |
IMDM | Gibco | 12440053 | |
Liberase DL | Roche | 5466202001 | |
LIVE/DEAD Fixable Blue | Thermo | L23105 | |
MDA-MB-231 | ATCC | HTB-26 | |
MEM | Gibco | 1140050 | |
mouse anti-human IgG-AP | Southern Biotech | JDC-10 | |
mouse anti-human IgG-unabeled | Southern Biotech | H2 | |
mouse anti-human IgM-AP | Southern Biotech | UHB | |
mouse anti-human IgM-unlabeled | Southern Biotech | SA-DA4 | |
MultiRad 350 | Precision X-Ray | ||
PBS | Corning | 45000-446 | |
Pen Strep | Gibco | 15140122 | |
Petri Dishes | Fisher Scientific | FB0875713A | |
p-nitrophenyl substrate | Thermo | 34045 | |
PRISM | Graphpad | ||
Rec Hu FLT3L | R&D systems | 308-FK-005/CF | |
Rec Hu IL6 | R&D systems | 206-IL-010/CF | |
Rec Hu SCF | R&D systems | 255SC010 | |
RPMI 1640 | Corning | 45000-39 | |
Saponin | Sigma | 8047-15-2 | |
Scissors | McKesson | 862945 | |
Serological pipettes 25 mL | Fisher Scientific | 1367811 | |
Sterile filter | Nalgene | 567-0020 | |
Sterile molecular water | Sigma | 7732-18-5 | |
Yeti Cell Analyzer | Bio-Rad | 12004279 | |
Zombie Green | biolegend | 423112 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved