JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biology

Single-Cell Analysis of the Expression of Pseudomonas syringae Genes within the Plant Tissue

Published: October 6th, 2022

DOI:

10.3791/64614

1Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Campus de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC)
* These authors contributed equally

A plethora of pathogenic microorganisms constantly attack plants. The Pseudomonas syringae species complex encompasses Gram-negative plant-pathogenic bacteria of special relevance for a wide number of hosts. P. syringae enters the plant from the leaf surface and multiplies rapidly within the apoplast, forming microcolonies that occupy the intercellular space. The constitutive expression of fluorescent proteins by the bacteria allows for visualization of the microcolonies and monitoring of the development of the infection at the microscopic level. Recent advances in single-cell analysis have revealed the large complexity reached by clonal isogenic bacterial populations. This complexity, referred to as phenotypic heterogeneity, is the consequence of cell-to-cell differences in gene expression (not linked to genetic differences) among the bacterial community. To analyze the expression of individual loci at the single-cell level, transcriptional fusions to fluorescent proteins have been widely used. Under stress conditions, such as those occurring during colonization of the plant apoplast, P. syringae differentiates into distinct subpopulations based on the heterogeneous expression of key virulence genes (i.e., the Hrp type III secretion system). However, single-cell analysis of any given P. syringae population recovered from plant tissue is challenging due to the cellular debris released during the mechanical disruption intrinsic to the inoculation and bacterial extraction processes. The present report details a method developed to monitor the expression of P. syringae genes of interest at the single-cell level during the colonization of Arabidopsis and bean plants. The preparation of the plants and the bacterial suspensions used for inoculation using a vacuum chamber are described. The recovery of endophytic bacteria from infected leaves by apoplastic fluid extraction is also explained here. Both the bacterial inoculation and bacterial extraction methods are empirically optimized to minimize plant and bacterial cell damage, resulting in bacterial preparations optimal for microscopy and flow cytometry analysis.

Tags

Keywords Single cell Analysis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved