JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Developmental Biology

The Zebrafish Tol2 System: A Modular and Flexible Gateway-Based Transgenesis Approach

Published: November 30th, 2022

DOI:

10.3791/64679

1Alcohol Research Center, Department of Biochemistry and Molecular Genetics, University of Louisville

Fetal alcohol spectrum disorders (FASD) are characterized by a highly variable set of structural defects and cognitive impairments that arise due to prenatal ethanol exposure. Due to the complex pathology of FASD, animal models have proven critical to our current understanding of ethanol-induced developmental defects. Zebrafish have proven to be a powerful model to examine ethanol-induced developmental defects due to the high degree of conservation of both genetics and development between zebrafish and humans. As a model system, zebrafish possess many attributes that make them ideal for developmental studies, including large numbers of externally fertilized embryos that are genetically tractable and translucent. This allows researchers to precisely control the timing and dosage of ethanol exposure in multiple genetic contexts. One important genetic tool available in zebrafish is transgenesis. However, generating transgenic constructs and establishing transgenic lines can be complex and difficult. To address this issue, zebrafish researchers have established the transposon-based Tol2 transgenesis system. This modular system uses a multisite Gateway cloning approach for the quick assembly of complete Tol2 transposon-based transgenic constructs. Here, we describe the flexible Tol2 system toolbox and a protocol for generating transgenic constructs ready for zebrafish transgenesis and their use in ethanol studies.

Explore More Videos

Zebrafish

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved