A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Soil density fractionation separates soil organic matter into distinct pools with differing stabilization mechanisms, chemistries, and turnover times. Sodium polytungstate solutions with specific densities allow the separation of free particulate organic matter and mineral-associated organic matter, resulting in organic matter fractions suitable for describing the soil response to management and climate change.
Soil organic matter (SOM) is a complicated mixture of different compounds that span the range from free, partially degraded plant components to more microbially altered compounds held in the soil aggregates to highly processed microbial by-products with strong associations with reactive soil minerals. Soil scientists have struggled to find ways to separate soil into fractions that are easily measurable and useful for soil carbon (C) modeling. Fractionating soil based on density is increasingly being used, and it is easy to perform and yields C pools based on the degree of association between the SOM and different minerals; thus, soil density fractionation can help to characterize the SOM and identify SOM stabilization mechanisms. However, the reported soil density fractionation protocols vary significantly, making the results from different studies and ecosystems hard to compare. Here, we describe a robust density fractionation procedure that separates particulate and mineral-associated organic matter and explain the benefits and drawbacks of separating soil into two, three, or more density fractions. Such fractions often differ in their chemical and mineral composition, turnover time, and degree of microbial processing, as well as the degree of mineral stabilization.
Soil is the largest store of terrestrial carbon (C), containing upward of 1,500 Pg of C in the top 1 m and almost double that amount in deeper levels globally, thus meaning soil contains more C than plant biomass and the atmosphere combined1. Soil organic matter (SOM) retains water and soil nutrients and is essential for plant productivity and the function of the terrestrial ecosystem. Despite global recognition of the importance of adequate SOM stocks for soil health and agricultural productivity, soil C stocks have been substantially depleted due to unsustainable forest and agricultural management, landscape change, and climate warming
1. Making stock solutions of sodium polytungstate (SPT)
CAUTION: SPT is an irritant and is harmful if swallowed or inhaled. It is toxic to aquatic organisms; avoid its release into the environment.
Soil density fractionation is ideally suited for investigating how soils differ in their particulate and mineral-associated organic matter content. Separating the SOC into these two distinct pools provides an avenue to elucidate the changes in soil C content and stabilization dynamics that may otherwise be unclear when observing trends in bulk soil C content. The further separation of the heavy material (density >1.85 g/cm3) provides additional insight into the changes and trends in soil C stabilization bu.......
Throughout the soil density fractionation protocol, there are a few specific procedures that must be monitored closely to help reduce error in the separation and analysis of the soil fractions. A critical step in the soil density fractionation procedure is to repeatedly verify the density of the SPT solution. Moisture in the soil sample will often dilute the SPT solution, thus lowering the density of the SPT. Therefore, the researcher must always ensure that complete separation of the light and heavy solutions has been a.......
The authors have nothing to disclose.
For this work, support was provided by National Science Foundation Grants DEB-1257032 to K.L. and DEB-1440409 to the H. J. Andrews Long Term Ecological Research program.
....Name | Company | Catalog Number | Comments |
Aspirator/vacuum tubing 1/4 x 1/2" | Kimble | 10847-216 | |
Conical polypropylene centrifuge tube, 250mL | Thermo Scientific | 376814 | |
Conical rubber gasket for filtering flasks | DWK Life Sciences | 292020001 | |
Double flat ended stainless steel spatula/scraper | Fisher Scientific | 14-373-25A | |
Glass fiber filter, grade GF/F, 110 mm | Whatman | WHA1825110 | |
Glass mason jar, 16 oz | Ball Corporation | 500 ml beaker or glass weigh dish are also suitable | |
Polypropylene conical bottle adapter, 250mL | Beckman Coulter | 369385 | |
Porcelain buchner funnel, 90mm | FisherBrand | FB966F | |
Reciprocating shaker, 2-speed | Eberbach | E6000.00 | |
Sidearm flask, 1000mL | VWR | 89000-386 | |
Sodium Polytungstate, crystalline | Sometu | SPT-0 or SPT-1, see Discussion for SPT choice | Shipping via FedEx from Germany |
Swinging bucket centrifuge | Beckman Coulter | 3362020 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved