Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This study developed a noninvasive and real-time method to evaluate the distribution of programmed death-ligand 1 in the whole body, based on positron emission tomographic imaging of [68Ga] D-dodecapeptide antagonist. This technique has advantages over conventional immunohistochemistry and improves the efficiency of identifying appropriate patients who will benefit from immune checkpoint blockade therapy.

Abstract

The development of immune checkpoint blockade therapy based on programmed cell death-protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) has revolutionized cancer therapies in recent years. However, only a fraction of patients responds to PD-1/PD-L1 inhibitors, owing to the heterogeneous expression of PD-L1 in tumor cells. This heterogeneity presents a challenge in the precise detection of tumor cells by the commonly used immunohistochemistry (IHC) approach. This situation calls for better methods to stratify patients who will benefit from immune checkpoint blockade therapy, to improve treatment efficacy. Positron emission tomography (PET) enables real-time visualization of the whole-body PD-L1 expression in a noninvasive way. Therefore, there is a need for the development of radiolabeled tracers to detect PD-L1 distribution in tumors through PET imaging.

Compared to their L-counterparts, dextrorotary (D)-peptides have properties such as proteolytic resistance and remarkably prolonged metabolic half-lives. This study designed a new method to detect PD-L1 expression based on PET imaging of 68Ga-labeled PD-L1-targeted D-peptide, a D-dodecapeptide antagonist (DPA), in tumor-bearing mice. The results showed that the [68Ga]DPA can specifically bind to PD-L1-overexpressing tumors in vivo, and showed favorable stability as well as excellent imaging ability, suggesting that [68Ga]DPA-PET is a promising approach for the assessment of PD-L1 status in tumors.

Introduction

The discovery of immune checkpoint proteins was a breakthrough in tumor therapy, and has led to major advances in the development of immune checkpoint blockade therapy1. Programmed cell death-protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) are potential drug targets with several antibodies approved by the Food and Drug Administration (FDA). PD-1 is expressed by tumor-infiltrating immune cells, such as CD4+, CD8+ T cells, and regulatory T cells. PD-L1 is one of the PD-1 ligands, which is overexpressed in a variety of tumor cells2,3. The interaction between PD....

Protocol

The animal experimental procedures were approved by the Animal Ethics Committee of Nanjing Medical University or the National Institutes of Quantum Science and Technology. Mice experiments were strictly performed in compliance with the institutional guidelines of the Committee for the Care and Use of Laboratory Animals.

1. Peptide synthesis

  1. Swell 100 mg of 4-methylbenzhydrylamine (MBHA) resin (loading capacity of 0.37 mmol/g) in 1 mL of N-methyl-2-pyr.......

Representative Results

[68Ga]DPA radiolabeling and stability
The model peptide, DPA, is an effective PD-L1 antagonist. DOTA-DPA was obtained with >95% purity and a yield of 68%. The mass of DOTA-DPA is experimentally observed at 1,073.3 ([M+2H]2+). 68Gallium is considered a suitable radionuclide to label peptides for PET imaging, and therefore was chosen for this study. To radiolabel DPA with 68Ga (half-life: 68 min), DOTA-PEG3-DPA was synt.......

Discussion

The critical steps described in this method include the efficient labeling of 68Ga to DPA and choosing a suitable time window for PET imaging, which must perfectly match the pharmacodynamic pattern of DPA in the tumor.

In contrast to IHC, PET imaging enables real-time detection of whole-body PD-L1 expression in a noninvasive manner, allowing the visualization of each positive area in a heterogeneous tumor6,7. Peptides were c.......

Acknowledgements

This study was supported by the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (no. 2022-RC350-04) and the CAMS Innovation Fund for Medical Sciences (nos. 2021-I2M-1-026, 2022-I2M-1-026-1, 02120101, 02130101, and 2022-I2M-2-002).

....

Materials

NameCompanyCatalog NumberComments
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)Merck60239-18-168Ga  chelation
3,3-diaminobenzidine (DAB) KitSigma-AldrichD7304-1SETImmunohistochemistry
anti-PD-L1 monoclonal antibodyWuhan Proteintech17952-1-apImmunohistochemistry: primary antibody
BMS202Selleck1675203-84-5Competitive binding assay: inhibitor
BSAMerckV900933Immunofluorescent : blocking 
DAPIMerckD9542Immunofluorescent: staining of nucleus
Dichloromethane (DCM)Merck34856Solvent
DIPEAMerck3439Peptide coupling
EDC·HClMerckE6383Activation of DOTA
FBSGibco10099Cell culture: supplement
FITC-conjugated anti-human IgG Fc AntibodyBiolegend409310Immunofluorescent: secondary antibody
FITC-conjugated anti PD-L1 antibodyBiolegend393606Flow cytometry: direct antibody
HCTUEnergy ChemicalE070004-25gPeptide coupling
HRP labeled goat anti-rabbit antibodyServicebioGB23303Immunohistochemistry: secondary antibody
Hydroxysuccinimide (NHS)Merck130672Activation of DOTA
MeCNMerckPHR1551Solvent
MorpholineMerck8.06127Fmoc- deprotection
NMPMerck8.06072Solevent
ParaformaldehydeMerck30525-89-4Fixation of tissues
PBSGibco10010023Cell culture: buffer
Penicillin-streptomycin Gibco10378016Cell culture: supplement
RIA tubePolyLabP10301AAs tissue sample container
RPMI-1640 mediumGibco11875093Cell culture: basic medium
Sodium acetateMerck1.06264Salt for buffer
Trypsin-EDTAGibco25200056Cell culture: dissociation agent
U87MG cell lineProcell Life Science & Technology CoCL-0238Cell model
Equipment
68Ge/68Ga generatorIsotope Technologies Munich, ITMNot applicableGeneration of [68Ga]
Autogamma counterPerkin Elmer Wizard2Detection of radioactivity
Confocal fluorescent microscopyKeyenceObservation of immunofluorescent results
Flow cytometerBecton Dickinson, BDLSRIIMonitoring the PD-L1 positive cells
High-performance liquid chromatography (HPLC)SHIMAZULC-20AT Purification of DPA peptide
PET scannerSiemens Medical SolutionsInveon MultiModality SystemPET imaging
Optical microscopyNikon Eclipse E100Observation of immunohistochemistry results
Solid phase peptide synthesizerPromega Vac-Man Laboratory Vacuum ManifoldLOT#11101Synthesis of DPA-DOTA peptide
Software
ASIProSiemens Medical SolutionsNot applicableAnalysis of PET-CT results
FlowJoBecton Dickinson, BDFlowJo 7.6.1Analysis of the flow cytometer results
Inveon Acquisition Workplace (IAW)Siemens Medical SolutionsNot applicableManagement of PET mechine
PrismGraphpadPrism 8.0Analysis of the data 

References

  1. Doroshow, D. B., et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Natire Reviews Clinical Oncology. 18 (6), 345-362 (2021).
  2. Krutzek, F., Kopka, K., Stadlbauer, S. Development of radiotracers for imagin....

Explore More Articles

68GalliumD peptidePET TracerPDL 1 ExpressionRadiolabelingHPLCSerum StabilityCell Binding

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved