JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Isolation and Characterization of the Murine Uterosacral Ligaments and Pelvic Floor Organs

Published: March 3rd, 2023

DOI:

10.3791/65074

1Biomedical Engineering Program, University of Colorado Boulder, 2Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 3Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 4BioFrontiers Institute, University of Colorado Boulder, 5Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign

Abstract

Pelvic organ prolapse (POP) is a condition that affects the integrity, structure, and mechanical support of the pelvic floor. The organs in the pelvic floor are supported by different anatomical structures, including muscles, ligaments, and pelvic fascia. The uterosacral ligament (USL) is a critical load-bearing structure, and injury to the USL results in a higher risk of developing POP. The present protocol describes the dissection of murine USLs and the pelvic floor organs alongside the acquisition of unique data on the USL biochemical composition and function using Raman spectroscopy and the evaluation of mechanical behavior. Mice are an invaluable model for preclinical research, but dissecting the murine USL is a difficult and intricate process. This procedure presents an approach to guide the dissection of murine pelvic floor tissues, including the USL, to enable multiple assessments and characterization. This work aims to aid the dissection of pelvic floor tissues by basic scientists and engineers, thus expanding the accessibility of research on the USL and pelvic floor conditions and the preclinical study of women's health using mouse models.

Explore More Videos

Keyword Extraction Uterosacral Ligament

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved