Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Horses have an exceptional aerobic exercise capacity, making equine skeletal muscle an important tissue for both the study of equine exercise physiology as well as mammalian mitochondrial physiology. This article describes techniques for the comprehensive assessment of mitochondrial function in equine skeletal muscle.

Abstract

Mitochondrial function-oxidative phosphorylation and the generation of reactive oxygen species-is critical in both health and disease. Thus, measuring mitochondrial function is fundamental in biomedical research. Skeletal muscle is a robust source of mitochondria, particularly in animals with a very high aerobic capacity, such as horses, making them ideal subjects for studying mitochondrial physiology. This article demonstrates the use of high-resolution respirometry with concurrent fluorometry, with freshly harvested skeletal muscle mitochondria, to quantify the capacity to oxidize substrates under different mitochondrial states and determine the relative capacities of distinct elements of mitochondrial respiration. Tetramethylrhodamine methylester is used to demonstrate the production of mitochondrial membrane potential resulting from substrate oxidation, including calculation of the relative efficiency of the mitochondria by calculating the relative membrane potential generated per unit of concurrent oxygen flux. The conversion of ADP to ATP results in a change in the concentration of magnesium in the reaction chamber, due to differing affinities of the adenylates for magnesium. Therefore, magnesium green can be used to measure the rate of ATP synthesis, allowing the further calculation of the oxidative phosphorylation efficiency (ratio of phosphorylation to oxidation [P/O]). Finally, the use of Amplex UltraRed, which produces a fluorescent product (resorufin) when combined with hydrogen peroxide, allows the quantification of reactive oxygen species production during mitochondrial respiration, as well as the relationship between ROS production and concurrent respiration. These techniques allow the robust quantification of mitochondrial physiology under a variety of different simulated conditions, thus shedding light on the contribution of this critical cellular component to both health and disease.

Introduction

The mitochondria of eukaryotic cells produce the majority of the ATP used by the cells for work and maintenance1. A key step in the mitochondrial production of ATP is the conversion of oxygen to water, and thus the metabolic capacity of mitochondria and the associated cells is frequently quantified through the measurement of oxygen consumption2. However, mitochondrial physiology is more complex than the simple process of oxygen consumption, and reliance on this endpoint exclusively provides an incomplete assessment of the impact of mitochondrial function and dysfunction on cellular health. Full characterization of mitoch....

Protocol

This study was approved by the Oklahoma State University Institutional Animal Care and Use Committee. Four Thoroughbred geldings (17.5 ± 1.3 years, 593 ± 45 kg) were used in this study to generate the representative results.

1. Obtaining skeletal muscle biopsy specimen

  1. Obtain skeletal muscle biopsies (follow sterile technique) from the center of the semitendinosus muscle (or other muscle of interest), using a 12 G University College Hospital (UCH) biopsy .......

Representative Results

The proposed reference state is that of a healthy sedentary Thoroughbred (no increased fitness due to compulsory exercise) and a fresh muscle sample collected from the center of a postural muscle, containing a high percentage of mitochondria-rich type I skeletal muscle fibers and incubated under conditions approximating resting metabolism (i.e., 38 °C and pH 7.0). Under these conditions, the investigator can expect LN values of 2.71 ± 0.90, PN values of 62.40 ± 26.22, PN+S .......

Discussion

The addition of fluorescent signals to the standard output of the high-resolution respirometer provides valuable information regarding mitochondrial physiology, but meticulous calibration of the fluorescent signal is critical for quality data. The original protocols for the use of MgG suggest that the calibration curves generated while calculating magnesium-adenylate dissociation constants could be applied to subsequent assays4; however, the fluorescent signal from the MgG may not be not sufficien.......

Acknowledgements

The authors would like to acknowledge the generous support of the John and Debbie Oxley Endowed Chair for Equine Sports Medicine and the Grayson Jockey Club Research Foundation.

....

Materials

NameCompanyCatalog NumberComments
ADPSigma-Aldrich (MilliporeSigma)A5285
Amplex UltraRedLife TechnologiesA36006
ATPSigma-Aldrich (MilliporeSigma)A2383
BSASigma-Aldrich (MilliporeSigma)A6003
Calcium carbonateSigma-Aldrich (MilliporeSigma)C4830
CCCPSigma-Aldrich (MilliporeSigma)C2759
DatLab 7.0Oroboros IncSoftware to operate O2K fluororespirometer
DithiothreitolSigma-Aldrich (MilliporeSigma)D0632
DTPASigma-Aldrich (MilliporeSigma)D1133
EGTASigma-Aldrich (MilliporeSigma)E4378
GlutamateSigma-Aldrich (MilliporeSigma)G1626
HEPESSigma-Aldrich (MilliporeSigma)H7523
Horseradish peroxidaseSigma-Aldrich (MilliporeSigma)P8250
Hydrogen peroxideSigma-Aldrich (MilliporeSigma)516813Must be made fresh daily prior to assay
ImidazoleSigma-Aldrich (MilliporeSigma)I2399
K-MESSigma-Aldrich (MilliporeSigma)M8250
Magnesium chloride hexahydrateSigma-Aldrich (MilliporeSigma)M9272
Magnesium GreenThermo Fisher ScientificM3733
MalateSigma-Aldrich (MilliporeSigma)M1000
MannitolSigma-Aldrich (MilliporeSigma)M9647
Mitochondrial isolation kitSigma-Aldrich (MilliporeSigma)MITOISO1
O2K fluororespirometerOroboros IncMultiple units required to run full spectrum of assays concurrently.
PhosphocreatineSigma-Aldrich (MilliporeSigma)P7936
Potassium hydroxideSigma-Aldrich (MilliporeSigma)P1767
Potassium lactobionateSigma-Aldrich (MilliporeSigma)L2398
Potassium phosphateSigma-Aldrich (MilliporeSigma)P0662
PyruvateSigma-Aldrich (MilliporeSigma)P2256Must be made fresh daily prior to assay
RotenoneSigma-Aldrich (MilliporeSigma)R8875
SuccinateSigma-Aldrich (MilliporeSigma)S2378
SucroseSigma-Aldrich (MilliporeSigma)84097
Superoxide dismutaseSigma-Aldrich (MilliporeSigma)S8160
TaurineSigma-Aldrich (MilliporeSigma)T0625
Titration pumpOroboros Inc
Titration syringesOroboros Inc
TMRMSigma-Aldrich (MilliporeSigma)T5428
UCH biopsy needleMillenium Surgical Corp72-238067Available in a range of sizes

References

  1. Wilson, D. F. Energy metabolism in muscle approaching maximal rates of oxygen utilization. Medicine and Science in Sports and Exercise. 27 (1), 54-59 (1995).
  2. Gnaiger, E. . Mitochondrial Pathways and Respiratory Control. An Introduction to OX....

Explore More Articles

High resolution Fluoro respirometryEquine Skeletal MuscleMitochondrial Oxygen ConsumptionATPReactive Oxygen SpeciesRespiration ChamberOxygen ElectrodeTMRM FluorescenceMitochondrial Efficiency

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved