Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes a simple and efficient method for the identification of 2,4-dibromophenol metabolites in plants.

Abstract

Crops can be extensively exposed to organic pollutants, since soil is a major sink for pollutants discarded into the environment. This creates potential human exposure through the consumption of pollutant-accumulated foods. Elucidating the uptake and metabolism of xenobiotics in crops is essential for the assessment of dietary exposure risk in humans. However, for such experiments, the use of intact plants requires long-term experiments and complex sample preparation protocols that can be affected by various factors. Plant callus cultures combined with high-resolution mass spectrometry (HRMS) may provide a solution for the accurate and time-saving identification of metabolites of xenobiotics in plants, as it can avoid interference from the microbial or fungal microenvironment, shorten the treatment duration, and simplify the matrix effect of intact plants. 2,4-dibromophenol, a typical flame retardant and endocrine disrupter, was chosen as the model substance due to its widespread occurrence in soil and its uptake potential by plants. Herein, plant callus was generated from asepsis seeds and exposed to sterile 2,4-dibromophenol-containing culture medium. The results showed that eight metabolites of 2,4-dibromophenol were identified in the plant callus tissues after 120 h of incubation. This indicates that 2,4-dibromophenol was rapidly metabolized in the plant callus tissues. Thus, the plant callus culture platform is an effective method to evaluate the uptake and metabolism of xenobiotics in plants.

Introduction

An increasing number of organic pollutants have been discarded into the environment due to anthropogenic activities1,2, and soil is considered a major sink for these contaminants3,4. The contaminants in the soil can be taken up by plants and potentially transferred to higher trophic-level organisms along food chains, by directly entering the human body through crop consumption, consequently leading to unintended exposure5,6. Plants utilize different pathways to metabolize xenobiotics for detoxi....

Protocol

1. Differentiation of carrot callus

NOTE: Autoclave all equipment used here and perform all operations in a UV-sterilized ultra-clean workbench.

  1. Vernalize the seeds by immersing the uniform carrot seeds (Daucus carota var. sativus) into deionized water at 4 °C for 16 h.
  2. Surface-sterilize the vernalized seeds with 75% ethanol for 20 min, and then rinse three times with sterile deionized water under aseptic conditions.
  3. Further steril.......

Representative Results

The steps of the protocol are depicted in Figure 1. Following the protocol, we compared the chromatogram of the carrot callus extract from the 2,4-dibromophenol treatment to the controls, and found eight distinct peaks that are present in the 2,4-dibromophenol treatment but absent in the controls (Figure 2). This indicates that a total of eight metabolites of 2,4-dibromophenol (M562, M545, M661, M413, M339, M380, M424, and M187) were successfully detected in the.......

Discussion

This protocol was developed to efficiently identify the biotransformation of xenobiotics in plants. The critical step of this protocol is the culture of the plant callus. The most difficult part is the differentiation and maintenance of the plant callus, because the plant callus is easily infected and developed to plant tissues. Therefore, it is important to make sure that all equipment used is autoclaved, and all operations are performed under aseptic conditions. The differentiation and maintenance of the plant callus s.......

Acknowledgements

This study was supported by the National Natural Science Foundation of China (21976160) and Zhejiang Province Public Welfare Technology Application Research Project (LGF21B070006).

....

Materials

NameCompanyCatalog NumberComments
2,4-dichlorophenoxyacetic acidWAKO1 mg/L
20% H2O2Sinopharm Chemical Reagent Co., Ltd.10011218-500ML
4-n-NP, >99%Dr. Ehrenstorfer GmbH
4-n-NP-d4Pointe-Claire
6-benzylaminopurineWAKO0.5 mg/L
75% ethanolSinopharm Chemical Reagent Co., Ltd.1269101-500ML
7890A-5975 gas chromatographyAgilent
ACQULTY ultra-performance liquid chromatographyWaters
Amber glass vialsWaters
Artificial climate incubatorNingbo DongNan Lab Equipment Co.,LTDRDN-1000A-4
AutoclavesSTIKMJ-Series
C18 columnACQUITY UPLC BEH
CentrifugeThermo Fisher
DB-5MS capillary columnAgilent
DichloromethaneSigma-Aldrich40071190-4L
Freeze dryerSCIENTZ 
High-throughput tissue grinderSCIENTZ 
MethanolSigma-Aldrich
MicrOTOF-QII mass spectrometerBruker Daltonics
Milli-Q systemMilliporeMS1922801-4L
Murashige & Skoog mediumHOPEBIOHB8469-7
N-hexaneSigma-AldrichH109658-4L
Nitrogen blowing instrument AOSHENGMD200-2
NP isomers, >99%Dr. Ehrenstorfer GmbH
Oasis HLB cartridgesWaters60 mg/3 mL
Research plusEppendorf100-1000 µL
Seeds of Little Finger carrot (Daucus carota var. sativus) Shouguang Seed Industry Co., Ltd
Shaking IncubatorsShanghai bluepard instruments Co.,ltd.THZ-98AB
Solid phase extractorAUTO SCIENCE
Ultrasound machineZKIUC-6
UV-sterilized ultra-clean workbenchAIRTECH

References

Explore More Articles

Plant Callus CultureXenobioticsMetabolic DegradationEnvironmental Risk Assessment24 dibromophenolMurashige And Skoog MediumCallus InductionSample PreparationFreeze DryingHomogenization

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved