Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol details the enrichment of native mycobacterial extracellular vesicles (mEVs) from axenic cultures of Mycobacterium smegmatis (Msm) and how mCherry (a red fluorescent reporter)-containing recombinant MsmEVs can be designed and enriched. Lastly, it verifies the novel approach with the enrichment of MsmEVs containing the EsxA protein of Mycobacterium tuberculosis.

Abstract

Most bacteria, including mycobacteria, generate extracellular vesicles (EVs). Since bacterial EVs (bEVs) contain a subset of cellular components, including metabolites, lipids, proteins, and nucleic acids, several groups have evaluated either the native or recombinant versions of bEVs for their protective potency as subunit vaccine candidates. Unlike native EVs, recombinant EVs are molecularly engineered to contain one or more immunogens of interest. Over the last decade, different groups have explored diverse approaches for generating recombinant bEVs. However, here, we report the design, construction, and enrichment of recombinant mycobacterial EVs (mEVs) in mycobacteria. Towards that, we use Mycobacterium smegmatis (Msm), an avirulent soil mycobacterium as the model system. We first describe the generation and enrichment of native EVs of Msm. Then, we describe the design and construction of recombinant mEVs that contain either mCherry, a red fluorescent reporter protein, or EsxA (Esat-6), a prominent immunogen of Mycobacterium tuberculosis. We achieve this by separately fusing mCherry and EsxA N-termini with the C-terminus of a small Msm protein Cfp-29. Cfp-29 is one of the few abundantly present proteins of MsmEVs. The protocol to generate and enrich recombinant mEVs from Msm remains identical to the generation and enrichment of native EVs of Msm.

Introduction

Despite the development and administration of a wide range of vaccines against infectious diseases, even to this day, ~30% of all human deaths still occur from communicable diseases1. Before the advent of the Tuberculosis (TB) vaccine - Bacillus Calmette Guerin (BCG) - TB was the number one killer (~10,000 to 15,000/100,000 population)2. With the administration of BCG and easy access to first and second-line anti-TB drugs, by 2022, TB-related deaths have dramatically dropped to ~1 million/year by 2022 (i.e., ~15-20/100,000 population1). However, in TB endemic populations of the world, TB-related d....

Protocol

1. Growth conditions of Mycobacterium smegmatis, Escherichia coli, and their derivatives

  1. Media
    1. Middlebrook 7H9 liquid broth
      1. Prepare 20% Tween-80 stock solution by pre-warming the required volume of double-distilled water (ddw) in a glass beaker to ~45-50 oC in a microwave, add the required volume of Tween-80 using an appropriate measuring cylinder, and stir continuously on a small magnetic stirrer to bri.......

Representative Results

We use M. smegmatis (Msm) as the model mycobacterium to demonstrate the enrichment of both native and recombinant mEVs (R-mEVs). This schematically summarized mEVs enrichment protocol (Figure 1) also works for the enrichment of R-mEVs of Msm and native EVs of Mtb (with minor modifications as in protocol notes of 1.2). Visualization of the enriched mEVs requires negatively staining them under a transmission electron microscope36 (Figure 2A.......

Discussion

Since developing a novel TB vaccine that is superior to and can replace BCG remains a formidable challenge, as an alternative, several groups are pursuing the discovery of different subunit TB vaccines that can boost BCG's potency and extend its protective duration48,49. Given the increasing attention to bacterial EVs (bEVs) as potential subunits and as natural adjuvants50,51, consistent enrichment of.......

Acknowledgements

The authors sincerely thank Prof. Sarah M. Fortune for kindly sharing M. smegmatis mc2155 stock. They also acknowledge Servier Medical Art (smart.servier.com) for providing some basic elements for Figure 1. They sincerely acknowledge the support of the rest of the lab members for their patient adjustments during the long use of the incubator shakers, centrifuges, and ultracentrifuges for mEV enrichment. They also acknowledge Mr. Surjeet Yadav, the laboratory assistant, for always making sure the necessary glassware and consumables were always available and handy. Lastly, they acknowledge the administrative, the purchase, and the fi....

Materials

NameCompanyCatalog NumberComments
A2 type Biosafety CabinetThermo Fisher Scientific, USA1300 series
Bench top CentrifugeEppendorf, USA5810 R
BstB1, HindIII, HpaINEB, USANEB
Cell densitometerGE Healthcare, USAUltraspec 10
Citric AcidSigma-Aldrich, Merck, USASigma Aldrich
Dibasic Potassium PhosphateSigma-Aldrich, Merck, USASigma Aldrich
Double Distilled WaterMerck, USA~18.2 MW/cm @ 25 oC
Electroporation cuvettesBio-Rad, USA2 mm
ElectroporatorBio-Rad, USAElectroporator
EsxA-specific AbAbcam, UKRabbit polyclonal
Ferric Ammonium CitrateSigma-Aldrich, Merck, USASigma Aldrich
Floor model centrifugeThermo Fisher Scientific, USASorvall RC6 plus
GlasswareBorosil, INDIA1 L Erlenmeyer flasks
GlycerolSigma-Aldrich, Merck, USASigma Aldrich
HEPES and Sodium ChlorideSigma-Aldrich, Merck, USASigma Aldrich
Incubator shakersThermo Fisher Scientific, USAMaxQ 6000 & 8000
L-AsparagineSigma-Aldrich, Merck, USASigma Aldrich
Luria Bertani Broth and Agar, MillerHi Media, INDIAHi Media
Magnesium Sulfate HeptahydrateSigma-Aldrich, Merck, USASigma Aldrich
Magnetic stirrerTarsons, INDIATarsons
mCherry-specific AbAbcam, UKRabbit monoclonal
MicrowaveLG, INDIAMC3286BLT
Middlebrook 7H9 BrothBD, USADifco Middlebrook 7H9 Broth
Middlebrook ADC enrichmentBD, USABBL Middlebrook ADC enrichment
NanodropThermo Fisher Scientific, USASpectronic 200 UV-Vis
NEB5aNEB, USAa derivative of DH5a
Optiprep (Iodixanol)Merck, USAAvailable as 60% stock solution (in water)
PCR purification kitHi Media, INDIAHi Media
pH MeterMettler Toledo, USAMettler Toledo
Plasmid DNA mini kitHi Media, INDIAHi Media
Plate incubatorThermo Fisher Scientific, USANew Series
Plasmid pMV261Addgene, USA *
*The   plasmid   is   no   more available in this plasmid bank
Shuttle vector
Proof-reading DNA PolymeraseThermo Fisher Scientific, USAPhusion DNA Plus Polymerase
Q5 Proof-reading DNA PolymeraseNEB, USANEB
Refrigerated circulating water bathThermo Fisher Scientific, USAR20
Middlebrock 7H11 Agar baseBD, USABBL Seven H11 Agar base
SOC brothHi Media, INDIAHi Media
Sodium HydroxideSigma-Aldrich, Merck, USASigma Aldrich
T4 DNA LigaseNEB, USANEB
Tween-80Sigma-Aldrich, Merck, USASigma Aldrich
UltracentrifugeBeckman Coulter, USAOptima L100K
Ultracentrifuge tubes - 14 mLBeckman Coulter, USAPolyallomer type – ultra clear type in SW40Ti rotor
Ultracentrifuge tubes - 38 mLBeckman Coulter, USAPolypropylene type– cloudy type for SW28 rotor
Ultrasonics cleaning waterbath sonicatorThermo Fisher Scientific, USASonicator - bench top model
0.22 µm Disposable filtersThermo Fisher Scientific, USANunc-Nalgene
30-kDa Centricon concentratorsMerck, USAAmicon Ultra centrifugal filters - Millipore
3X FLAG antibodySigma-Aldrich, Merck, USASigma Aldrich
400 mL Centrifuge bottlesThermo Fisher Scientific, USANunc-Nalgene
50 mL Centrifuge tubesCorning, USASterile, pre-packed
Bacteria
Strain
Escherichia coliNEB, USANEB 5-alpha (a derivative of DH5α).
Msm expressing cfp29::mCherryThis studyMC2 155
Msm expressing cfp29::esxAThis studyMC2 155
Msm expressing cfp29::esxA::3X FLAGThis studyMC2 155
Mycobacterium smegmatis (Msm)Prof. Sarah M. Fortune, Harvard Univ, USA MC2 155

References

  1. . Global Tuberculosis Report 2022. , (2022).
  2. Luca, S., Mihaescu, T. History of BCG vaccine. Mædica. 8 (1), 53-58 (2013).
  3. Palmer, C. E., Long, M. W.

Explore More Articles

Extracellular VesiclesMycobacteriaEnrichmentRecombinantVaccine CandidatesAffinity based ApproachesMycobacterium SmegmatisSautons MediaTween 80Mid exponential StageCentrifugationMCherryFluorescent Proteins

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved