Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This article provides a stepwise guide to establish a primary culture of dental pulps stem cells using the explant culture method and characterization of these cells based on ICSCRT guidelines. The cells isolated by this protocol can be considered as mesenchymal stem cells for further applications.

Abstract

The human dental pulp represents a promising multipotent stem cell reservoir with pre-eminent regenerative competence that can be harvested from an extracted tooth. The neural crest-derived ecto-mesenchymal origin of dental pulp stem cells (DPSCs) bestows a high degree of plasticity that owes to its multifaceted benefits in tissue repair and regeneration. There are various practical ways of harvesting, maintaining, and proliferating adult stem cells being investigated for their use in regenerative medicine. In this work, we demonstrate the establishment of a primary mesenchymal stem cell culture from dental tissue by the explant culture method. The isolated cells were spindle-shaped and adhered to the plastic surface of the culture plate. The phenotypic characterization of these stem cells showed positive expression of the international society of cell therapy (ISCT)-recommended cell surface markers for MSC, such as CD90, CD73, and CD105. Further, negligible expression of hematopoietic (CD45) and endothelial markers (CD34), and less than 2% expression of HLA-DR markers, confirmed the homogeneity and purity of the DPSC cultures. We further illustrated their multipotency based on differentiation to adipogenic, osteogenic, and chondrogenic lineages. We also induced these cells to differentiate into hepatic-like and neuronal-like cells by adding corresponding stimulation media. This optimized protocol will aid in the cultivation of a highly expandable population of mesenchymal stem cells to be utilized in the laboratory or for preclinical studies. Similar protocols can be incorporated into clinical setups for practicing DPSC-based treatments.

Introduction

Adult stem cells have transpired into a powerful therapeutic tool for cell-directed treatments and therapies due to their plasticity, paracrine mechanisms, and immunomodulatory properties1,2,3. The encouraging data from stem cell-based preclinical studies have inspired researchers to work for the bench to-bedside translation. The type of stem cells used for stem cell therapy plays a significant role in successful outcomes. In preclinical and clinical studies, the most widely reported source for mesenchymal stem cells (MSCs) remain bone marrow4,

Protocol

All the procedures described in the study have been approved by the Institute Ethics Committee (IEC# 9195/PG-12 ITRG/2571-72) of PGIMER, Chandigarh. All the cell culture related experiments need to be performed in a Class II biological safety cabinet (BSC) following aseptic technique. Dental pulp was obtained from healthy teeth of three (F/14, M/14, and M/20) patients undergoing third molar extractions for orthodontic reasons. Before the sample collection, written informed consent was obtained from the patient/guardian i.......

Representative Results

Here, we describe how researchers can establish a pure culture of DPSCs via the explant method6,7,8,9,10 and induce them toward multiple lineages to establish the purity of culture for downstream applications.

We established a primary culture of DPSCs from the small tissue of pulp extracted from the third molar tooth of pat.......

Discussion

Stem cells have pinned the hopes of curing numerous diseases, owing to their plasticity, robustness, immunomodulatory properties, paracrine mechanisms, and homing efficiencies. Dental pulp tissue is considered the most potent and valuable source of stem cells, with eminent plasticity and a regenerative capability. Here, we demonstrate the isolation of DPSCs, utilizing the widely adopted explant culture method, in which the cells migrate from pieces of pulp tissue or explants to grow into a homogenous cell culture that mo.......

Acknowledgements

We acknowledge the funding support to AK from the Department of Health Research (DHR), ICMR, Govt. of India (DHR-NRI Grant # R.12015/01/2022-HR). SR has received funding from ICMR, Govt. of India (Grant # 2020-7593/SCR-BMS) and PS has received fellowship from CSIR, Govt. of India. We are also thankful to Ms. Sandhya Tokhi and Ms. Bhupinder Kaur for assistance in flow cytometry, and central sophisticated instrumentation core (CSIC) and PGIMER, Chandigarh for providing infrastructural support.

....

Materials

NameCompanyCatalog NumberComments
6 well cell culture plateCostar3516For cell culture
Alcian blue stainEZstain chondrocyte staining kit, HiMediaCCK029
alizarin red S stainSigma-AldrichTMS-008Osteogenic stain
Antibiotic cocktailHimediaA002-5X50MLTo prevent culture contamination
Ascorbic AcidHimediaTC094-25GChondrogenic induction
B27 supplementGibco17504044For neural induction
bFGF ( basic Fibroblast Growth Factor)GibcoPHG0024For neural induction
CD 105BD-Pharmingen560839
CD 35Biolegend343604
CD 45Biolegend304006
CD 73Biolegend344016
CD 90Biolegend328107Characterization
cetyl pyridinium chloride (CPC)Sigma-Aldrich1104006For Alizarin Red extraction
Dexamethasone 21-phosphate disodiumSigma-AldrichD1159-100MG
Dulbecco's Phosphate Buffered SalineHimediaTS1006-5LFor washing purpose
EGF (Epidermal Growth Factor)GibcoPHG0311For hepatic and neural  induction
EVOS LED microscopeInvitrogenFor  fluorescence imaging
EZ stain Chondrocyte staining kitHimediaCCK029-1KTChondro stain Kit
FACS Canto flow cytometerBD BiosciencesFor cell characterization
Fetal Bovine SerumGibco16000044For primary culture
Fetal Bovine SerumSigma-AldrichF2442For cell culture
G5 supplementGibco17503012For neural induction
HGF( Hepatocyte Growth Factor)Sigma-AldrichH1404For hepatic Induction
HLA-DRBiolegend307605
 Human TGF-β3Peprotech#100-36E-10U
Insulin-Transferrin-Selenous acid premixSigma-AldrichI3146For hepatic Induction
ITS premixCorning354350
LDL Uptake Assay kitAbcamab133127For hepatic characterization
Low glucose DMEMGibco11885-084For hepatic induction
MAP2 antibodySigma-AldrichM4403For neural characterization
N2 supplementGibco17502048For neural induction
Neural Basal MediaGibco21103049For neural induction
NFM antibodySigma-AldrichN4142For neural characterization
Nikon Elipse TS100 microscopeNikonFor  fluorescence imaging
Oil Red OSigma-Aldrich01391-250MlAdipogenic stain
Oncostatin MR&D Systems295-OM-010/CFFor hepatic Induction
PetridishTarson460090-90MMFor tissue cutting
Potassium phosphate monobasicSigma-Aldrich15655-100GOsteogenic induction
Propan-2-olThermo FisherQ13827For Oil Red O extraction
Sodium pyruvate solutionSigma life sciencesS8636-100ML
Trypsin-EDTASigma-AldrichT4049For cell passaging
Whatman filter papermerckWHA1001325filter paper
α- Minimum Essential Media (α-MEM)Sigma-AldrichM0643-10X 1LMedia for primary culture
β-glycerophosphate disodium salt hydrateSigma-AldrichG9422-50G

References

  1. Bhattacharyya, S., Kumar, A., Lal Khanduja, K. The voyage of stem cell toward terminal differentiation: a brief overview. Acta Biochimica et Biophysica Sinica. 44 (6), 463-475 (2012).
  2. Prentice, D. A. Adult stem cells. Circulati....

Explore More Articles

BiologyRegenerative MedicineMultipotencyDifferentiationExplant CultureCell Surface MarkersAdipogenicOsteogenicChondrogenicHepaticNeuronal

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved