Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Periprosthetic joint infection (PJI) caused by dangerous pathogens is common in clinical orthopedics. Existing animal models cannot accurately simulate the actual situation of PJI. Here, we established a Candida albicans biofilm-associated PJI mouse model to research and develop new therapeutics for PJI.

Abstract

Periprosthetic joint infection (PJI) is one of the common infections caused by Candida albicans (C. albicans), which increasingly concerns surgeons and scientists. Generally, biofilms that can shield C. albicans from antibiotics and immune clearance are formed at the infection site. Surgery involving the removal of the infected implant, debridement, antimicrobial treatment, and reimplantation is the gold standard for the treatment of PJI. Thus, establishing animal PJI models is of great significance for the research and development of new drugs or therapeutics for PJI. In this study, a smooth nickel-titanium alloy wire, a widely used implant in orthopedic clinics, was inserted into the femoral joint of a C57BL/6 mouse before the C. albicans were inoculated into the articular cavity along the wire. After 14 days, mature and thick biofilms were observed on the surface of implants under a scanning electronic microscope (SEM). A significantly reduced bone trabecula was found in the H&E staining of the infected joint specimens. To sum up, a mouse PJI model with the advantages of easy operation, high successful rate, high repeatability, and high clinical correlation was established. This is expected to be an important model for clinical studies of C. albicans biofilm-related PJI prevention.

Introduction

Candida albicans (C. albicans) commensally reside in many parts of the human body1, which is also the most common opportunistic pathogen that causes life-threatening invasive fungal infections, especially in immunocompromised patients2,3. C. albicans can transform between yeast and mycelium states as a polymorphic fungus. The mycelium state exhibits higher virulence, stronger adhesion, and invasion of cells and tissues4,5. Besides, C. albicans can form biofilms on the surfaces of biomedical ma....

Protocol

The animals were purchased from Xi'an Jiaotong University. All animal experiment procedures were approved by the Institutional Animal Ethical Committee of Xi'an Jiaotong University (approval number: SCXK [Shaanxi] 2021-103). The mice were kept for one week with 5 mice per cage. They were allowed free access to food and water. The animals were maintained at room temperature (RT; 24 °C ± 1 °C) and light/dark cycle (12 h/12 h) before the study was performed.

1. Buffer.......

Representative Results

Transferring the samples onto a plate medium and counting colonies after overnight incubation is commonly used to assess the local pathogen load near the lesion22,23. In our study, the microbial culture of liver, kidney, and spleen samples was negative, indicating that the model in this study only led to local infection instead of systemic infection in the mice23.

The SEM images of the implants are shown in

Discussion

The infection caused by the contamination of surgical instruments or the surgical environment during surgery is the major reason for most implant infections24,25,26,27. Therefore, a mouse C. albicans biofilm-related PJI model was constructed in this study. Compared to the traditional PJI model in which sterile stainless-steel particles suspended in saline were used as the implant, a ni.......

Acknowledgements

We are grateful for the financial support from the Natural Science Foundation of Shaanxi Province (grant number 2021SF-118) and the National Natural Science Foundation of China (grant numbers 81973409, 82204631).

....

Materials

NameCompanyCatalog NumberComments
0.5 Mactutrius turbidibrisShanghai Lujing Technology Co., Ltd5106063
4 °C refrigeratorElectrolux (China) Electric Co., LtdESE6539TA
AgarBeijing Aoboxing Bio-tech Co., Ltd01-023
Analytical balancesShimadzuATX124
Autoclaves SterilizerSANYOMLS-3750
CarbenicillinAmrescoC0885
Eclipse Ci Nikon upright optical microscope NikonEclipse Ts2-FL
GlucoseMacklin D823520
Inoculation ringThermo Scientific251586
IsofluraneRWD20210103
NaClXi'an Jingxi Shuanghe Pharmaceutical Co., Ltd20180108
ParaformaldehydeBeyotime BiotechnologyP0099
PeptoneBeijing Aoboxing Bio-tech Co., Ltd01-001
RWD R550 multi-channel small animal anesthesia machine RWDR550
SEMHitachiTM-1000
Temperature incubatorShanghai Zhichu Instrument Co., LtdZQTY-50N
Ultrapure water water generatorHeal ForceNW20VF
Ultrasound machineDo-ChromDS10260D
Yeast extractThermo Scientific OxoidLP0021B

References

  1. Mayer, F. L., Wilson, D., Hube, B. Candida albicans pathogenicity mechanisms. Virulence. 4 (2), 119-128 (2013).
  2. Fan, F., et al. Candida albicans biofilms: antifungal resistance, immune evasion, and emerging th....

Explore More Articles

Periprosthetic Joint InfectionCandida AlbicansBiofilmMouse ModelTitanium nickel WireScanning Electron MicroscopyBone Histology

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved