Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we describe a standard protocol for quantifying the optokinetic reflex. It combines virtual drum stimulation and video-oculography, and thus allows precise evaluation of the feature selectivity of the behavior and its adaptive plasticity.

Abstract

The optokinetic reflex (OKR) is an essential innate eye movement that is triggered by the global motion of the visual environment and serves to stabilize retinal images. Due to its importance and robustness, the OKR has been used to study visual-motor learning and to evaluate the visual functions of mice with different genetic backgrounds, ages, and drug treatments. Here, we introduce a procedure for evaluating OKR responses of head-fixed mice with high accuracy. Head fixation can rule out the contribution of vestibular stimulation on eye movements, making it possible to measure eye movements triggered only by visual motion. The OKR is elicited by a virtual drum system, in which a vertical grating presented on three computer monitors drifts horizontally in an oscillatory manner or unidirectionally at a constant velocity. With this virtual reality system, we can systematically change visual parameters like spatial frequency, temporal/oscillation frequency, contrast, luminance, and the direction of gratings, and quantify tuning curves of visual feature selectivity. High-speed infrared video-oculography ensures accurate measurement of the trajectory of eye movements. The eyes of individual mice are calibrated to provide opportunities to compare the OKRs between animals of different ages, genders, and genetic backgrounds. The quantitative power of this technique allows it to detect changes in the OKR when this behavior plastically adapts due to aging, sensory experience, or motor learning; thus, it makes this technique a valuable addition to the repertoire of tools used to investigate the plasticity of ocular behaviors.

Introduction

In response to visual stimuli in the environment, our eyes move to shift our gaze, stabilize retinal images, track moving targets, or align the foveae of two eyes with targets located at different distances from the observer, which are vital to proper vision1,2. Oculomotor behaviors have been widely used as attractive models of sensorimotor integration to understand the neural circuits in health and disease, at least partly because of the simplicity of the oculomotor system3. Controlled by three pairs of extraocular muscles, the eye rotates in the socket primarily around three correspon....

Protocol

All experimental procedures performed in this study were approved by the Biological Sciences Local Animal Care Committee, in accordance with guidelines established by the University of Toronto Animal Care Committee and the Canadian Council on Animal Care.

1. Implantation of a head bar on top of the skull

NOTE: To avoid the contribution of VOR behavior to the eye movements, the head of the mouse is immobilized during the OKR test. Therefore, a head bar.......

Representative Results

With the procedure detailed above, we evaluated the dependence of the OKR on several visual features. The example traces shown here were derived using the analysis codes provided in Supplementary Coding File 1, and the example traces raw file can be found in Supplementary Coding File 2. When the drum grating drifted in a sinusoidal trajectory (0.4 Hz), the animal's eye automatically followed the movement of the grating in a similar oscillatory manner (Figure 3B

Discussion

The method of the OKR behavioral assay presented here provides several advantages. First, computer-generated visual stimulation solves the intrinsic issues of physical drums. Dealing with the issue that physical drums do not support the systematic examination of spatial frequency, direction, or contrast tuning8, the virtual drum allows these visual parameters to be changed on a trial-by-trial basis, thus facilitating a systematic and quantitative analysis of the feature selectivity of the OKR beha.......

Acknowledgements

We are thankful to Yingtian He for sharing data of direction tuning. This work was supported by grants from the Canadian Foundation of Innovation and Ontario Research Fund (CFI/ORF project no. 37597), NSERC (RGPIN-2019-06479), CIHR (Project Grant 437007), and Connaught New Researcher Awards.

....

Materials

NameCompanyCatalog NumberComments
2D translational stageThorlabsXYT1
Acrylic resinLang DentalB1356For fixing headplate on skull and protecting skull
BupivacaineSTERIMAXST-BX223Bupivacaine Injection BP 0.5%. Local anesthesia
CarprofenRIMADYL8507-14-1Analgesia
Compressed airDust-Off
Eye ointmentAlconSystaneFor maintaining moisture of eyes
Graphic cardNVIDIAGeforce GTX 1650 or Quadro P620.For generating single screen among three monitors
Heating padKent ScientificHTP-1500For maintaining body temperature
High-speed infrared (IR) cameraTeledyne DalsaG3-GM12-M0640For recording eye rotation
IR LEDDigikeyPDI-E803-NDFor CR reference and the illumination of the eye
IR mirrorEdmund optics64-471For reflecting image of eye
IsofluraneFRESENIUS KABICP0406V2
LabviewNational instrumentsversion 2014eye tracking
Lactated ringerBAXTERJB2324Water and energy supply
Lidocaine and epinephrine mixDentsply Sirona82215-1XYLOCAINE. Local anesthesia
Luminance MeterKonica MinoltaLS-150for calibration of monitors
MatlabMathWorksversion xxxanalysis of eye movements
Meyhoefer CuretteWorld Precision Instruments501773For scraping skull and removing fascia
Microscope calibration slideAmscopeMR095to measure the magnification of video-oculography
MonitorsAcer B247WVisual stimulation
Neutral density filterLee filters299to generate scotopic visual stimulation
Nigh vision goggleAlpha opticsAO-3277for scotopic OKR
PhotodiodeDigikeyTSL254-R-LF-NDto synchronize visual stimulation and video-oculography
Pilocarpine hydrochlorideSigma-AldrichP6503
PostThorlabsTR1.5
Post holderThorlabsPH1
PsychoPyopen source softwareversion xxxvisual stimulation toolkit
ScissorRWDS12003-09For skin removal
SuperglueKrazy GlueType: All purpose. For adhering headplate on the skull

References

  1. Gerhard, D. Neuroscience. 5th Edition. Yale Journal of Biology and Medicine. , (2013).
  2. Distler, C., Hoffmann, K. P. . The Oxford Handbook of Eye Movement. , 65-83 (2011).
  3. Sereno, A. B., Bolding, M. S.

Explore More Articles

Optokinetic ReflexOKRRetinal SystemVisual Feature SelectivityEye MovementsVideo OculargraphyVirtual Visual StimulationVisual Motor LearningHead fixed MiceVirtual Drum SystemSpatial FrequencyTemporal oscillation FrequencyContrast

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved