A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Neuroscience
适应性脑深部刺激 (aDBS) 有望改善帕金森病 (PD) 等神经系统疾病的治疗。aDBS使用与症状相关的生物标志物实时调整刺激参数,以更精确地针对症状。为了实现这些动态调整,必须为每个患者确定 aDBS 算法的参数。这需要临床研究人员进行耗时的手动调整,因此很难为单个患者找到最佳配置或扩展到多个患者。此外,当患者在家时,在诊所内配置的 aDBS 算法的长期有效性仍然是一个悬而未决的问题。为了大规模实施这种疗法,需要一种在远程监测治疗结果的同时自动配置aDBS算法参数的方法。在本文中,我们分享了一个家庭数据收集平台的设计,以帮助该领域解决这两个问题。该平台由一个开源的集成硬件和软件生态系统组成,允许在家中收集神经、惯性和多摄像头视频数据。为了确保患者身份数据的隐私,该平台通过虚拟专用网络加密和传输数据。这些方法包括对数据流进行时间对齐和从视频记录中提取姿态估计。为了演示该系统的使用,我们将该平台部署到帕金森病患者的家中,并在 1.5 年的时间里收集了自我指导临床任务和自由行为期间的数据。记录亚治疗、治疗和超治疗刺激幅度的数据,以评估不同治疗条件下的运动症状严重程度。这些时间对齐的数据表明,该平台能够同步家庭多模态数据收集,以进行治疗评估。该系统架构可用于支持自动化 aDBS 研究、收集新数据集以及研究临床外 DBS 治疗对神经系统疾病患者的长期影响。
Explore More Videos
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved