A subscription to JoVE is required to view this content. Sign in or start your free trial.
O protocolo mostra um protótipo da plataforma de coleta de dados multimodal em casa que apoia pesquisas otimizando a estimulação cerebral profunda adaptativa (aDBS) para pessoas com distúrbios neurológicos do movimento. Também apresentamos as principais descobertas da implantação da plataforma por mais de um ano na casa de um indivíduo com doença de Parkinson.
A estimulação cerebral profunda adaptativa (aDBS) mostra-se promissora para melhorar o tratamento de distúrbios neurológicos, como a doença de Parkinson (DP). O aDBS usa biomarcadores relacionados a sintomas para ajustar os parâmetros de estimulação em tempo real para atingir os sintomas com mais precisão. Para permitir esses ajustes dinâmicos, os parâmetros para um algoritmo de aDBS devem ser determinados para cada paciente individual. Isso requer um ajuste manual demorado por parte dos pesquisadores clínicos, tornando difícil encontrar uma configuração ideal para um único paciente ou dimensionar para muitos pacientes. Além disso, a eficácia a longo prazo dos algoritmos aDBS configurados na clínica enquanto o paciente está em casa permanece uma questão em aberto. Para implementar essa terapia em larga escala, é necessária uma metodologia para configurar automaticamente os parâmetros do algoritmo aDBS enquanto monitora remotamente os resultados da terapia. Neste artigo, compartilhamos um projeto para uma plataforma de coleta de dados em casa para ajudar o campo a abordar ambas as questões. A plataforma é composta por um ecossistema integrado de hardware e software que é de código aberto e permite a coleta domiciliar de dados de vídeo neural, inercial e multicâmera. Para garantir a privacidade dos dados identificáveis pelo paciente, a plataforma criptografa e transfere dados por meio de uma rede privada virtual. Os métodos incluem o alinhamento de tempo de fluxos de dados e a extração de estimativas de pose de gravações de vídeo. Para demonstrar o uso desse sistema, implantamos essa plataforma na casa de um indivíduo com DP e coletamos dados durante tarefas clínicas autoguiadas e períodos de comportamento livre ao longo de 1,5 anos. Os dados foram registrados em amplitudes de estimulação subterapêutica, terapêutica e supraterapêutica para avaliar a gravidade dos sintomas motores em diferentes condições terapêuticas. Esses dados alinhados ao tempo mostram que a plataforma é capaz de coletar dados multimodais sincronizados em casa para avaliação terapêutica. Essa arquitetura de sistema pode ser usada para apoiar a pesquisa automatizada de aDBS, para coletar novos conjuntos de dados e para estudar os efeitos de longo prazo da terapia com DBS fora da clínica para aqueles que sofrem de distúrbios neurológicos.
A estimulação cerebral profunda (DBS) trata distúrbios neurológicos, como a doença de Parkinson (DP), fornecendo corrente elétrica diretamente para regiões específicas do cérebro. Estima-se que existam 8,5 milhões de casos de DP em todo o mundo, e a EEP tem se mostrado uma terapia crítica quando a medicação é insuficiente para o manejo dos sintomas 1,2. No entanto, a efetividade da EEP pode ser limitada por efeitos colaterais que às vezes ocorrem a partir da estimulação convencionalmente administrada em amplitude, frequência e largura de pulso fixas3. Essa implementação em malha aberta ....
Os pacientes são inscritos através de um estudo maior aprovado pelo IRB e IDE no aDBS da Universidade da Califórnia, São Francisco, protocolo # G1800975. O paciente incluído neste estudo também forneceu consentimento informado especificamente para este estudo.
1. Componentes do sistema em casa
Projeto e implantação de protótipos de plataforma
Projetamos um protótipo de plataforma e a implantamos na casa de um único paciente (Figura 1). Após a primeira instalação de hardware em casa, a plataforma pode ser mantida, e os dados coletados inteiramente através de acesso remoto. Os dispositivos INS, relógios inteligentes e câmeras têm aplicativos voltados para o paciente, permitindo que os pacientes iniciem e parem gravações. O hardware de coleta de víd.......
Compartilhamos o projeto de um protótipo caseiro de uma plataforma multimodal de coleta de dados para apoiar pesquisas futuras em pesquisa em neuromodulação. O design é de código aberto e modular, de modo que qualquer peça de hardware pode ser substituída, e qualquer componente de software pode ser atualizado ou alterado sem que a plataforma geral entre em colapso. Enquanto os métodos de coleta e desidentificação de dados neurais são específicos para o INS selecionado, os métodos restantes e a abordagem gera.......
Este material é baseado em trabalhos apoiados pelo National Science Foundation Graduate Research Fellowship Program (DGE-2140004), pelo Weill Neurohub e pelo National Institute of Health (UH3NS100544). Quaisquer opiniões, descobertas e conclusões ou recomendações expressas neste material são do(s) autor(es) e não refletem necessariamente as opiniões da National Science Foundation, do Weill Neurohub ou do National Institute of Health. Agradecemos a Tianjiao Zhang por suas consultas especializadas em design de plataforma e incorporação de dados de vídeo. Agradecemos especialmente ao paciente por sua participação neste estudo e pelo feedback e conselhos sobre segurança d....
Name | Company | Catalog Number | Comments |
Analysis RCS Data Processing | OpenMind | https://github.com/openmind-consortium/Analysis-rcs-data, open-source | |
Apple Watches | Apple, Inc | Use 2 watches for each patient, one on each wrist | |
BRIO ULTRA HD PRO BUSINESS WEBCAM | Logitech | 960-001105 | Used 3 in our platform design |
DaVinci Resolve video editing software | DaVinci Resolve | used to support camera calibration | |
Dell XPS PC | Dell | 2T hard disk drive, 500GB SSD | |
Dropbox | Dropbox | ||
ffmpeg | N/A | open-source, install to run the Video Recording App | |
Gooseneck mounts for webcams | N/A | ||
GPU | Nvidia | A minimum of 8GB GPU memory is recommended to run OpenPose, 12GB is ideal | |
Java 11 | Oracle | Install to run the Video Recording App | |
Microsoft Surface tablet | Microsoft | ||
NoMachine | NoMachine | Ideal when using a Linux OS, open-source | |
OpenPose | N/A | open-source | |
Rclone file transfer program | Rclone | Encrypts data and copies or moves data to offsite storage, open-source | |
StrivePD app | RuneLabs | We installed the app on the Apple Watches to start recordings and upload data to an online portal. | |
Summit RC+S neuromodulation system | Medtronic | For investigational use only | |
touchscreen-compatible monitor | N/A | ||
Video for Linux 2 API | The Linux Kernel | Install if using a Linux OS for video recording | |
Wasabi | Wasabi | Longterm cloud data storage | |
WireGuard VPN Protocol | WireGuard | open-source |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved