JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Assessment of Aphidicidal Effect of Entomopathogenic Fungi against Parthenogenetic Insect, Mustard Aphid, Lipaphis erysimi (Kalt.)

Published: July 21st, 2023



1Department of Entomology, National Chung Hsing University

This protocol presents an optimized detached-leaf bioassay system for evaluating the effectiveness of entomopathogenic fungi (EPF) against the mustard aphid (Lipaphis erysimi (Kalt.)), a parthenogenetic insect. The method outlines the data collection process during Petri dish experiments, enabling researchers to consistently measure the virulence of EPF against mustard aphids and other parthenogenetic insects.

The mustard aphid (L. erysimi) is a pest that infests various cruciferous crops and transmits plant viruses. To achieve eco-friendly pest management, entomopathogenic fungi (EPF) are potential microbial control agents for controlling this pest. Therefore, virulence screening of EPF isolates under Petri dish conditions is necessary before field application. However, the mustard aphid is a parthenogenetic insect, making it difficult to record data during Petri dish experiments. A modified system for detached-leaf bioassays was developed to address this issue, using a micro-sprayer to inoculate conidia onto aphids and prevent drowning by facilitating air-drying after spore suspension. The system maintained high relative humidity throughout the observation period, and the leaf disc remained fresh for over ten days, allowing parthenogenetic reproduction of the aphids. To prevent offspring buildup, a process of daily removal using a painting brush was implemented. This protocol demonstrates a stable system for evaluating the virulence of EPF isolates against mustard aphids or other aphids, enabling the selection of potential isolates for aphid control.

The mustard aphid (L. erysimi) is a notorious pest that infests a variety of cruciferous crops, causing significant economic losses1. While several systematic insecticides have been recommended to combat aphid infestations, the frequent use of these insecticides raises concerns about pesticide resistance2,3. Therefore, in terms of eco-friendly pest management, entomopathogenic fungi (EPF) could serve as a suitable alternative control strategy. EPF is an insect pathogen with the ability to infect hosts by penetrating their cuticles, making it a potent agent for controlling aphid....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NOTE: The complete flowchart is shown in Figure 1.

1. Mustard aphid collection and maintenance

  1. Collection of mustard aphids
    1. Flip the leaves and visually check for infestation of mustard aphids on cruciferous crops in the field.
    2. Record the sampling site information (i.e., GPS) and host plant(s), and confirm the history of insecticide applications with the farmers.
    3. Use an insect aspirator or a f.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The presented flowchart illustrates the stable condition of the mustard aphids from field collection to virulence screening. The maintenance of aphids from field collection ensured a stable increase in aphid colonies with an adequate food supply. The field-collected aphids were confirmed as mustard aphids through the use of molecular markers, including PCR amplicon size and LeCO1 sequencing. The virulence screening, conducted using the detached-leaf method, revealed a consistent survival rate for mustard aphids, with the.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Crucifers, a group of vegetables, are frequently infested by multiple aphid species, including mustard aphid (L. erysimi) and cabbage aphid (Brevicoryne brassicae)26. Both species have been reported in Taiwan27, and it is possible for them to coexist at the collection site. To distinguish closely related aphid species, this study employed a molecular identification technique using a multiplex primer set21. By designing a molecular m.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This research was supported by 109-2313-B-005 -048 -MY3 from the Ministry of Science and Technology (MOST).


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
10 μL Inoculating Loop NEST Scientific 718201
100 bp DNA Ladder III Geneaid DL007
2x SuperRed PCR Master Mix Biotools TE-SR01
50 mL centrifuge tube Bioman Scientific ET5050-12
6 cm Petri dish Alpha Plus Scientific 16021
6 mm insect aspirator MegaView Science BA6001
70 mm filter paper NO.1 Toyo Roshi Kaisha
70% ethanol
9 cm Petri dish Alpha Plus Scientific 16001
Agar Bioman Scientific AGR001.1 Microbiology grade
Agarose Bioman Scientific PB1200
BioGreen Safe DNA Gel Buffer Bioman Scientific SDB001T
Chromas Technelysium
GenepHlow Gel/PCR Kit Geneaid DFH300
Gene-Spin Genomic DNA Isolation Kit Protech Technology PT-GD112-V3
Hemocytometer Paul Marienfeld 640030
Komatsuna leaves (Brassica rapa var. perviridis) Tai Cheng Farm 1-010-300410
MiniAmp Thermal Cycler Thermo Fisher Scientific A37834
Mustard aphid (Lipaphis erysimi)
Painting brush Tian Cheng brush company 4716608400352
Parafilm M Bemis PM-996
Pellet pestle Bioman Scientific GT100R
Sabouraud Dextrose Broth HiMedia MH033-500G
SPSS Statistics IBM
TAE buffer 50x Bioman Scientific TAE501000
Tween 80 PanReac AppliChem 142050.1661

  1. Ghosh, S., Roy, A., Chatterjee, A., Sikdar, S. R. Effect of regional wind circulation and meteorological factors on long-range migration of mustard aphids over indo-gangetic plain. Scientific Reports. 9, 5626 (2019).
  2. Dhillon, M. K., Singh, N., Yadava, D. K. Preventable yield losses and management of mustard aphid, Lipaphis erysimi (Kaltenbach) in different cultivars of Brassica juncea(L.) Czern & Coss. Crop Protection. 161, 106070 (2022).
  3. Huang, F., Hao, Z., Yan, F. Influence of oilseed rape seed treatment with imidacloprid on survival, feeding behavior, and detoxifying enzymes of mustard aphid, lipaphis erysimi. Insects. 10 (5), 144 (2019).
  4. Mannino, M. C., Huarte-Bonnet, C., Davyt-Colo, B., Pedrini, N. Is the insect cuticle the only entry gate for fungal infection? insights into alternative modes of action of entomopathogenic fungi. Journal of Fungi. 5 (2), 33 (2019).
  5. Bamisile, B. S., Akutse, K. S., Siddiqui, J. A., Xu, Y. Model application of entomopathogenic fungi as alternatives to chemical pesticides: prospects, challenges, and insights for next-generation sustainable agriculture. Frontiers in Plant Science. 12, 741804 (2021).
  6. Scorsetti, A. C., Humber, R. A., Garcia, J. J., Lopez Lastra, C. C. Natural occurrence of entomopathogenic fungi (Zygomycetes: Entomophthorales) of aphid (Hemiptera: Aphididae) pests of horticultural crops in Argentina. Biocontrol. 52, 641-655 (2007).
  7. Liu, Y. C., Ni, N. T., Chang, J. C., Li, Y. H., Lee, M. R., Kim, J. S., et al. Isolation and selection of entomopathogenic fungi from soil samples and evaluation of fungal virulence against insect pests. Journal of Visualized Experiments. 175, e62882 (2021).
  8. Francis, F., Fingu-Mabola, J. C., Fekih, I. B. Direct and endophytic effects of fungal entomopathogens for sustainable aphid control: a review. Agriculture. 12 (12), 2081 (2022).
  9. Simon, J., Peccoud, J. Rapid evolution of aphid pests in agricultural environments. Current Opinion in Insect Science. 26, 17-24 (2018).
  10. Ujjan, A. A., Shahzad, S. Use of Entomopathogenic Fungi for the Control of Mustard Aphid (Lipaphis erysimi) on canola (Brassica napus L). Pakistan Journal of Botany. 44 (6), 2081-2086 (2012).
  11. Sajid, M., Bashir, N. H., Batool, Q., Munir, I., Bilal, M., Jamal, M. A., et al. In-vitro evaluation of biopesticides (Beauveria bassiana, Metarhizium anisopliae, Bacillus thuringiensis) against mustard aphid Lipaphis erysimi kalt. (Hemiptera: Aphididae). Journal of Entomology and Zoology Studies. 5 (6), 331-335 (2017).
  12. Paschapur, A. U., Subbanna, A. R. N. S., Singh, A. K., Jeevan, B., Stanley, J., Rajashekara, H., Mishra, K. K., Koti, P. S., Kant, L., Pattanayak, A. Alternaria alternata strain VLH1: a potential entomopathogenic fungus native to North Western Indian Himalayas. Egyptian Journal of Biological Pest Control. 32, 138 (2022).
  13. Miohammed, A. A. Lecanicillium muscarium and Adalia bipunctata combination for the control of black bean aphid, Aphis fabae. Biocontrol. 63, 277-287 (2018).
  14. Thaochan, N., Ngampongsai, A., Prabhakar, C. S., Hu, Q. Beauveria bassiana PSUB01 simultaneously displays biocontrol activity against Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae) and promotes plant growth in Chinese kale under hydroponic growing conditions. Biocontrol Science and Technology. 31 (10), 997-1015 (2021).
  15. Mseddi, J., Farhat-Touzri, D. B., Azzouz, H. Selection and characterization of thermotolerant Beauveria bassiana isolates and with insecticidal activity against the cotton-melon aphid Aphis gossypii (Glover) (Hemiptera: Aphididae). Pest Management Science. 78 (6), 2183-2195 (2022).
  16. Butt, T. M., Ibrahim, L., Clark, S. J., Beckett, A. The germination behaviour of Metarhizium anisopliae on the surface of aphid and flea beetle cuticles. Mycological Research. 99 (8), 945-950 (1995).
  17. Ullah, S., Raza, A. B. M., Alkafafy, M., Sayed, S., Hamid, M. I., Majeed, M. Z., Riaz, M. A., Gaber, N. M., Asim, M. Isolation, identification and virulence of indigenous entomopathogenic fungal strains against the peach-potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), and the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control. 32, 2 (2022).
  18. Yokomi, R. K., Gottwald, T. R. Virulence of Verticillium lecanii Isolates in Aphids Determined by Detached-leaf Bioassay. Journal of Inbertebrate Pathology. 51, 250-258 (1988).
  19. Vu, V. H., Hong, S. I., Kim, K. Selection of entomopathogenic fungi for aphid control. Journal of Bioscience and Bioengineering. 104 (6), 498-505 (2007).
  20. Vandenberg, J. D. Standardized bioassay and screening of beauveria bassiana and paecilomyces fumosoroseus against the russian wheat aphid (homoptera: aphididae). Journal of Economic Entomology. 89 (6), 1418-1423 (1996).
  21. Lu, W. N., Wu, Y. T., Kuo, M. H. Development of species-specific primers for the identification of aphids in Taiwan. Applied Entomology and Zoology. 43 (1), 91-96 (2008).
  22. Liu, Y. C., et al. Isolation and selection of entomopathogenic fungi from soil samples and evaluation of fungal virulence against insect pests. Journal of Visualized Experiments. 175, e62882 (2021).
  23. Menger, J., Beauzay, P., Chirumamilla, A., Dierks, C., Gavloski, J., Glogoza, P., et al. Implementation of a diagnostic-concentration bioassay for detection of susceptibility to pyrethroids in soybean aphid (hemiptera: aphididae). Journal of Economic Entomology. 113 (2), 932-939 (2020).
  24. Zhang, R., Chen, J., Jiang, L., Qiao, G. The genes expression difference between winged and wingless bird cherry-oat aphid Rhopalosiphum padi based on transcriptomic data. Scientific Reports. 9, 4754 (2019).
  25. Abbott, W. S. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 18, 265-267 (1925).
  26. Liu, T. X., Sparks, A. N. . Aphids on Cruciferous Crops: Identification and Management. , 9-11 (2001).
  27. Kuo, M., Chianglin, H. Temperature dependent life table of brevicoryne brassicae (l.)(hemiptera: aphididae) on radish. Formosan Entomologist. 27, 293-302 (2007).
  28. Im, Y., Park, S., Lee, S. Y., Kim, J., Kim, J. J. Early-Stage defense mechanism of the cotton aphid aphis gossypii against infection with the insect-killing fungus beauveria bassiana JEF-544. Frontiers in Immunology. 13, 907088 (2022).
  29. Kim, J. J., Roberts, D. W. The relationship between conidial dose, moulting and insect developmental stage on the susceptibility of cotton aphid, Aphis gossypii, to conidia of Lecanicillium attenuatum, an entomopathogenic fungus. Biocontrol Science and Technology. 22 (3), 319-331 (2012).
  30. Reingold, V., Kottakota, C., Birnbaum, N., Goldenberg, M., Lebedev, G., Ghanim, M., et al. Intraspecies variation ofMetarhiziumbrunneumagainst the green peach aphid,Myzus persicae, provides insight into thecomplexity of disease progression. Pest Management Science. 77, 2557-2567 (2021).
  31. Ortiz-Urquiza, A., Keyhani, N. O. Action on the Surface: entomopathogenic fungi versus the insect cuticle. Insects. 4, 357-374 (2013).
  32. Knodel, J. J., Beauzay, P., Boetel, M., Prochaska, T., Chirumamilla, A. . 2022 North Dakota Field Crop Insect Management Guide. , (2021).
  33. Yeo, H., Pell, J. K., Alderson, P. G., Clark, S. J., Pye, B. J. Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Management Science. 59 (2), 156-165 (2003).
  34. Erdos, Z., Chandler, D., Bass, C., Raymond, B. Controlling insecticide resistant clones of the aphid, Myzus persicae, using the entomopathogenic fungus Akanthomyces muscarius: fitness cost of resistance under pathogen challenge. Pest Management Science. 77 (11), 5286-5293 (2021).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved