JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Chemistry

Magnetometric Characterization of Intermediates in the Solid-State Electrochemistry of Redox-Active Metal-Organic Frameworks

Published: June 9th, 2023

DOI:

10.3791/65335

1Department of Chemistry, Graduate School of Science, Nagoya University, 2International Research Organization for Advanced Science and Technology, Kumamoto University, 3Integrated Research Consortium on Chemical Sciences, Nagoya University

Ex situ magnetic surveys can directly provide bulk and local information on a magnetic electrode to reveal its charge storage mechanism step by step. Herein, electron spin resonance (ESR) and magnetic susceptibility are demonstrated to monitor the evaluation of paramagnetic species and their concentration in a redox-active metal-organic framework (MOF).

Electrochemical energy storage has been a widely discussed application of redox-active metal-organic frameworks (MOFs) in the past 5 years. Although MOFs show outstanding performance in terms of gravimetric or areal capacitance and cyclic stability, unfortunately their electrochemical mechanisms are not well understood in most cases. Traditional spectroscopic techniques, such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS), have only provided vague and qualitative information about valence changes of certain elements, and the mechanisms proposed based on such information are often highly disputable. In this article, we report a series of standardized methods, including the fabrication of solid-state electrochemical cells, electrochemistry measurements, the disassembly of cells, the collection of MOF electrochemical intermediates, and physical measurements of the intermediates under the protection of inert gases. By using these methods for quantitatively clarifying the electronic and spin state evolution within a single electrochemical step of redox-active MOFs, one can provide clear insight into the nature of electrochemical energy storage mechanisms not only for MOFs, but also for all other materials with strongly correlated electronic structures.

Since the term metal-organic framework (MOF) was introduced in the late 1990s, and especially in the 2010s, the most representative scientific concepts concerning MOFs have arisen from their structural porosity, including guest encapsulation, separation, catalytic properties, and molecule sensing1,2,3,4. Meanwhile, scientists were quick to realize that it is essential for MOFs to possess stimuli-responsive electronic properties in order to integrate them into modern smart devices. This idea triggered the spawning and flourishing of the condu....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Electrode fabrication

  1. Synthesizing Cu-THQ MOF
    NOTE: Cu-THQ MOF polycrystalline powder was synthesized via a hydrothermal method following previously published procedures14,20,23.
    1. Put 60 mg of tetrahydroxyquinone into a 20 mL ampule, then add 10 mL of degassed water. In a separate glass vial, dissolve 110 mg of copper (II) nitrate trihydrate in another 10 mL of degassed .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Our previous work included a detailed discussion of ex situ ESR spectroscopy and ex situ magnetic susceptibility measurements for electrochemically cycled CuTHQ20. Here, we present the most representative and detailed results that can be obtained following the protocol described in this paper.

Figure 2
Fi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

To produce cathodes, it is necessary to mix the active material with conductive carbon to achieve a low polarization during the electrochemical process. The carbon additive is the first critical point for ex situ magnetometry; if the carbon has radical defects, the emergence of the electrochemically induced organic radical cannot be observed in the ESR spectrum. This makes it difficult to precisely determine the spin concentration or organic radical concentration, since these two types of radicals have similar g.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study was supported by a Japan Society for the Promotion of Science (JSPS) KAKENHI Grant (JP20H05621). Z. Zhang also thanks the Tatematsu Foundation and Toyota Riken scholarship for financial support.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1-Methyl-2-pyrrolidoneFUJIFILM Wako Chemicals139-17611Super Dehydrated
1mol/L LiBF4 EC:DEC (1:1 v/v%)KishidaLBG-96533electrolyte
4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxylFUJIFILM Wako Chemicals089-04191TEMPOL, for Spin Labeling 
Ampule tubeMaruemu Corporation5-124-0520mL
Carbon black, Super P ConductiveAlfa AesarH30253
Conductive Carbon BlackMitsubishi Chemical
Copper (II) Nitrate TrihydrateFUJIFILM Wako Chemicals033-12502deleterious substances
Dimethyl CarbonateFUJIFILM Wako Chemicals046-31935battery grade
EthylenediamineFUJIFILM Wako Chemicals053-00936deleterious substances
Graphene NanoplateletsTokyo Chemical IndustryG04426-8nm(thick), 15µm(wide)
Poly(vinylidene fluoride)Sigma Aldrich182702
Potassium BromideFUJIFILM Wako Chemicals165-17111for Infrared Spectrophotometry
Sodium Alginate FUJIFILM Wako Chemicals199-09961500-600 cP
SQUID MagnetometerQuantum DesignMPMS-XL 5
Tetrahydroxy-1,4-benzoquinone HydrateTokyo Chemical IndustryT1090
X-Band ESRJEOLJES-F A200

  1. Lee, J., et al. Metal-organic framework materials as catalysts. Chemical Society Reviews. 38 (5), 1450-1459 (2009).
  2. Dolgopolova, E. A., Rice, A. M., Martin, C. R., Shustova, N. B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews. 47 (13), 4710-4728 (2018).
  3. Qian, Q., et al. MOF-based membranes for gas separations. Chemical Reviews. 120 (16), 8161-8266 (2020).
  4. Wang, Q., Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews. 120 (2), 1438-1511 (2020).
  5. Wang, M., Dong, R., Feng, X. Two-dimensional conjugated metal-organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chemical Society Reviews. 50 (4), 2764-2793 (2021).
  6. Baumann, A. E., Burns, D. A., Liu, B., Thoi, V. S. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry. 2 (1), 86 (2019).
  7. Nam, K. W., et al. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nature Communications. 10 (1), 4948 (2019).
  8. Sheberla, D., et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials. 16 (2), 220-224 (2017).
  9. Wang, Z., et al. Ultrathin two-dimensional conjugated metal-organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chemical Science. 11 (29), 7665-7671 (2020).
  10. Zhang, Z., Yoshikawa, H., Awaga, K. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: Coexistence of metal and ligand redox activities in a metal-organic framework. Journal of the American Chemical Society. 136 (46), 16112-16115 (2014).
  11. Zhang, Z., Yoshikawa, H., Awaga, K. Discovery of a "bipolar charging" mechanism in the solid-state electrochemical process of a flexible metal-organic framework. Chemistry of Materials. 28 (5), 1298-1303 (2016).
  12. Li, C., Hu, X., Hu, B. Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochimica Acta. 253, 439-444 (2017).
  13. Liu, J., et al. Reversible formation of coordination bonds in Sn-based metal-organic frameworks for high-performance lithium storage. Nature Communications. 12 (1), 3131 (2021).
  14. Jiang, Q., et al. A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity. Angewandte Chemie. 59 (13), 5273-5277 (2020).
  15. Sakaushi, K., Nishihara, H. Two-dimensional π-conjugated frameworks as a model system to unveil a multielectron-transfer-based energy storage mechanism. Accounts of Chemical Research. 54 (15), 3003-3015 (2021).
  16. Li, H., et al. 2D organic radical conjugated skeletons with paramagnetic behaviors. Advanced Materials Interfaces. 8 (18), 2100943 (2021).
  17. Peeks, M. D., et al. Electronic delocalization in the radical cations of porphyrin oligomer molecular wires. Journal of the American Chemical Society. 139 (30), 10461-10471 (2017).
  18. Krug von Nidda, H. A., et al. Anisotropic exchange in LiCuVO4 probed by ESR. Physical Review B. 65 (13), 134445 (2002).
  19. Zeng, Z., et al. Pro-aromatic and anti-aromatic π-conjugated molecules: An irresistible wish to be diradicals. Chemical Society Reviews. 44 (18), 6578-6596 (2015).
  20. Chen, Q., Adeniran, O., Liu, Z. F., Zhang, Z., Awaga, K. Graphite-like charge storage mechanism in a 2D π-d conjugated metal-organic framework revealed by stepwise magnetic monitoring. Journal of the American Chemical Society. 145 (2), 1062-1071 (2023).
  21. Julien, C. M., Mauger, A., Groult, H., Zhang, X., Gendron, F. LiCo1-yByO2 as cathode materials for rechargeable lithium batteries. Chemistry of Materials. 23 (2), 208-218 (2011).
  22. Niemöller, A., Jakes, P., Eichel, R. A., Granwehr, J. In operando EPR investigation of redox mechanisms in LiCoO2. Chemical Physics Letters. 716, 231-236 (2019).
  23. Park, J., et al. Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal-organic framework. Journal of the American Chemical Society. 140 (44), 14533-14537 (2018).
  24. Rondeau, R. E. A technique for degassing liquid samples. Journal of Chemical Education. 44 (9), 530 (1967).
  25. Flores-Llamas, H. Inhomogeneously broadened EPR lineshape of axial powder. Applied Magnetic Resonance. 9 (2), 289-298 (1995).
  26. Sun, L., et al. Room-temperature quantitative quantum sensing of lithium ions with a radical-embedded metal-organic framework. Journal of the American Chemical Society. 144 (41), 19008-19016 (2022).
  27. Chen, Y., et al. Successive storage of cations and anions by ligands of π-d-conjugated coordination polymers enabling robust sodium-ion batteries. Angewandte Chemie. 60 (34), 18769-18776 (2021).
  28. Roessler, M. M., Salvadori, E. Principles and applications of EPR spectroscopy in the chemical sciences. Chemical Society Reviews. 47 (8), 2534-2553 (2018).
  29. Ji, X., et al. Pauli paramagnetism of stable analogues of pernigraniline salt featuring ladder-type constitution. Journal of the American Chemical Society. 142 (1), 641-648 (2020).
  30. Noel, M., Santhanam, R. Electrochemistry of graphite intercalation compounds. Journal of Power Sources. 72 (1), 53-65 (1998).
  31. Wu, K. H., Ting, T. H., Wang, G. P., Ho, W. D., Shih, C. C. Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polymer Degradation and Stability. 93 (2), 483-488 (2008).
  32. Yao, M., Taguchi, N., Ando, H., Takeichi, N., Kiyobayashi, T. Improved gravimetric energy density and cycle life in organic lithium-ion batteries with naphthazarin-based electrode materials. Communications Materials. 1 (1), 70 (2020).
  33. Krzystek, J., et al. EPR spectra from "EPR-silent" species: High-frequency and high-field EPR spectroscopy of pseudotetrahedral complexes of nickel(II). Inorganic Chemistry. 41 (17), 4478-4487 (2002).

Tags

Magnetometric Characterization

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved