Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Coulometric respirometry is ideal for measuring the metabolic rate of small organisms. When adapted for Drosophila melanogaster in the present study, measured O2 consumption was within the range reported for wildtype D. melanogaster by previous studies. Per-fly O2 consumption by CASK mutants, which are smaller and less active, was significantly lower than the wildtype.

Abstract

Coulometric microrespirometry is a straightforward, inexpensive method for measuring the O2 consumption of small organisms while maintaining a stable environment. A coulometric microrespirometer consists of an airtight chamber in which O2 is consumed and the CO2 produced by the organism is removed by an absorbent medium. The resulting pressure decrease triggers electrolytic O2 production, and the amount of O2 produced is measured by recording the amount of charge used to generate it. In the present study, the method has been adapted to Drosophila melanogaster tested in small groups, with the sensitivity of the apparatus and the environmental conditions optimized for high stability. The amount of O2 consumed by wildtype flies in this apparatus is consistent with that measured by previous studies. Mass-specific O2 consumption by CASK mutants, which are smaller and known to be less active, was not different from congenic controls. However, the small size of CASK mutants resulted in a significant reduction in O2 consumption on a per-fly basis. Therefore, the microrespirometer is capable of measuring O2 consumption in D. melanogaster, can distinguish modest differences between genotypes, and adds a versatile tool for measuring metabolic rates.

Introduction

The ability to measure metabolic rate is crucial for a complete understanding of an organism in its environmental context. For example, it is necessary to measure metabolic rate in order to understand its role in lifespan1, the role of diet in metabolism2, or the threshold for hypoxic stress3.

There are two general approaches to measuring the metabolic rate4. Direct calorimetry measures energy expenditure directly by measuring heat production. Indirect calorimetry measures energy production through other means, often via respirometric measurement....

Protocol

1. Fly rearing and collection

  1. Maintain flies at 25 °C in narrow vials containing standard Drosophila food.
    NOTE: The sample size for each genotype should comprise at least nine replicates, each consisting of a single respirometer chamber containing 15-25 flies, set up as described below.
  2. Transfer the flies every 2-3 days.
  3. Anesthetize flies with CO2, collect groups of 15-25 males of each genotype, and place each group into fresh, unyeasted fo.......

Representative Results

The pressure and current outputs of the respirometer controller are shown for one chamber in one experiment in Figure 3A. The first, long current pulse pressurized the chamber from ambient pressure (approximately 992 hPa) to the pre-set OFF threshold of 1017 hPa. As the flies consumed O2 and CO2 was absorbed, pressure decreased slowly until it reached the ON threshold of 1016 hPa, which activated current through the O2 generator. In the example shown, the ave.......

Discussion

The above procedure demonstrates measurement of O2 consumption in D. Melanogaster using an electronic coulometric microrespirometer. The resulting data for O2 consumption in wild-type D. melanogaster were within the ranges described in most previous publications using diverse methods (Table 1) although somewhat lower than that reported by others3,6.

Critical steps addressed the t.......

Acknowledgements

We thank Dr. Linda Restifo at the University of Arizona for suggesting testing the O2 consumption of CASK mutants and for sending CASK mutants and their congenic controls. Publication fees were provided by the Departmental Reinvestment Fund from the Biology Department at the University of College Park. Space and some equipment were provided by the Universities at Shady Grove.

....

Materials

NameCompanyCatalog NumberComments
19/22 Thermometer AdapterWilmad-LabglassML-280-702Sensor Plug
2 ml Screwcap TubesFisher3464O2 generator
2-Pin ConnectorZyamy40PIN-RFB10O2 generator: cut to 2-pin
4-Pin Female ConnectorTE Connectivity215299-4Sensor Plug
5 ml Polypropylene TubeFalcon352063Cut to 5.5 cm and perforated 
50 ml Schlenk Tube 19/22 JointLaboyHMF050804Chamber
6-Conductor CableZenith6-Conductor 26 gaCable
6-Pin Female Bulkhead ConnectorSwitchcraft17982-6SG-300Controller
6-Pin Female ConnectorSwitchcraft18982-6SG-522Sensor plug
6-Pin Male ConnectorSwitchcraft16982-6PG-522Cable
800 ul centrifuge tubeFisher05-408-120Soda Lime Cartridge
ABS Plastic EnclosureBud IndustriesPS-11533-GController
Arduino Nano EveryArduino LLCABX00028Controller
BME 280 SensorDIYMallFZ1639-BME280Sensor Plug
Circuit BoardLheng5 X 7 cmController
Copper SulfateBioPharmBC2045O2 Generator
ComputerAzulleByte4Data Acquisition
Cotton RollsKajukajudo#2Cut in half to plug fly tubes
Cut in quarters for humidity
Environmental ChamberPercivalI30 VLC8Fly Care
EpoxyJB WeldPlastic BonderSecure Electrodes in O2 Generator
Fly FoodLab ExpressType RFly Care
Keck Clampsuxcella20092300ux0418Secures glass joint of chamber to plug
Low-Viscosity EpoxyLoctiteE-30CLSensor Plug
OLED DisplayIZOKEEIZKE31-IIC-WH-3Controller
Platinum Wire 24 gauGems14349O2 generator
Silicone greaseDow-CorningHigh Vacuum GreaseSeals chamber-plug connection
Soda LimeJorvetJO553CO2 absorption
Toggle SwitchE-Switch100SP1T1B1M1QEHController
USB CableSabrentCB-UM63Controller
USB HubAtollaHub 3.0Connect controllers to computer
Water bathAmersham56-1165-33Temperature Control
Water Bath TankGlass Cages15-liter rimless acrylicBath for Respirometers

References

  1. Arking, R., Buck, S., Wells, R. A., Pretzlaff, R. Metabolic rates in genetically based long lived strains of Drosophila. Experimental Gerontology. 23 (1), 59-76 (1988).
  2. Henry, Y., Overgaard, J., Colinet, H.

Explore More Articles

Drosophila MelanogasterMicrorespirometryCoulometricOxygen ConsumptionMetabolismTemperatureActivityEnvironmental AdaptationMutantsWild typeCASK

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved