JoVE Logo
Faculty Resource Center

Sign In





Representative Results





Cancer Research

Screening Ion Channels in Cancer Cells

Published: June 16th, 2023



1Department of Neurology and Rehabilitation Medicine, Division of Neuro-Oncology, University of Cincinnati College of Medicine, 2Department of Pharmaceutical Sciences, School of Pharmacy, University of Saint Joseph, 3The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine

The pharmacological targeting of ion channels is a promising approach to treating solid tumors. Detailed protocols are provided for characterizing ion channel function in cancer cells and assaying the effects of ion channel modulators on cancer viability.

Ion channels are critical for cell development and maintaining cell homeostasis. The perturbation of ion channel function contributes to the development of a broad range of disorders or channelopathies. Cancer cells utilize ion channels to drive their own development, as well as to improve as a tumor and to assimilate in a microenvironment that includes various non-cancerous cells. Furthermore, increases in levels of growth factors and hormones within the tumor microenvironment can result in enhanced ion channel expression, which contributes to cancer cell proliferation and survival. Thus, the pharmacological targeting of ion channels is potentially a promising approach to treating solid malignancies, including primary and metastatic brain cancers. Herein, protocols to characterize the function of ion channels in cancerous cells and approaches to analyze modulators of ion channels to determine their impact on cancer viability are described. These include staining a cell(s) for an ion channel(s), testing the polarized state of mitochondria, establishing ion channel function using electrophysiology, and performing viability assays to assess drug potency.

Membrane transport proteins are critical for communication between cells, as well as for maintaining cellular homeostasis. Amongst the membrane transport proteins, ion channels serve to drive the growth and development of cells and to maintain the state of cells in challenging and changing environments. Ion channels have also been reported to drive and support the development of solid tumors, both systemically and in the central nervous system (CNS)1,2. For example, KCa3.1 channels are responsible for regulating membrane potential and controlling cell volume, which is important in cell-cycle regulation. Defect....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Immunolabeling ion channels in cultured cells

  1. Preparing the cells and experimental set-up
    1. Maintain the cells as an actively growing culture in 75 cm2 culture flasks. Passage the cells once until they become 50%-90% confluent, depending on the doubling time of the cell line being used.
      NOTE: For the present study, D283 cells, a Group 3 medulloblastoma cell line, were used.
    2. Collect the cells from the culture flask into a centrifuge tube (15 mL or 50 mL), and add 2 mL.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Above are select procedures that can be employed to characterize ion channels in cancerous cells. The first protocol highlights the staining of an ion channel. As detailed, there are many challenges when staining an ion channel or, for that matter, any protein that is present in the extracellular membrane. Shown in Figure 1 is the staining for a subunit of the pentameric GABAA receptor. The second protocol highlights the results of testing the polarized state of mitochondria in ca.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Changes in ion channel function alter intracellular signaling cascades, which can impact the overall functioning of a cell. Over the past decade, it has become increasingly clear that ion channels are important to cancer cell growth and metastasis. Importantly, many ion channels are primary targets for approved therapeutics targeting a broad range of disorders24. Investigators have probed whether ion channels could be anti-cancer targets, and the initial results are promising2

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors acknowledge support from the Thomas E. & Pamela M. Mischell Family Foundation to S.S. and the Harold C. Schott Foundation funding of the Harold C. Schott Endowed Chair, UC College of Medicine, to S.S.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
ABS SpectraMax Plate ReaderMolecular DevicesABS
Alexa Flor 488InvitrogenA32723Goat Anti-Rabbit
B27 SupplementGibco12587-010Lacks vitamin A
Biosafety CabinetLABCONCO302381101Class II, Type A2
Bovine Serum AlbuminFisher ScientificBP1606-100
CO2 IncubatorFisher Scientific13-998-211Heracell VIOS 160i
Calcium ChlorideFisher ScientificC7902Dihydrate
Cell Culture Dishes, 150 mmFisher Scientific12-600-004Cell culture treated
Cell Culture Flasks, 75 cm2Fisher Scientific430641UCell culture treated
Cell Culture Plates, 6 wellFisher Scientific353046Cell culture treated
Cell Culture Plates, 96 wellFisher Scientific353072Cell culture treated
Corning CoolCellFisher Scientific07-210-0006
Coverslips, 22 x 22 mmFisher Scientific12-553-450Corning brand
D283 MedATCCHTB-185
DABCO Mounting MediaEMS17989-97
D-GlucoseSigma Life SciencesD9434
Dimethyl SulfoxideSigma AldrichD2650Cell culture grade
DMEM/F12, base mediaFisher Scientific11330-032With phenol red
DMEM/F12, phenol red freeFisher Scientific21041-025
EGTASigma AldrichE4378
Epidermal Growth FactorSTEMCELL78006.1
Fetal Bovine Serum, QualifiedGibco10437-028
Fibroblast Growth Factor, BasicMilliporeGF003
GARBA5 AntibodyAvivaARP30687_P050Rabbit Polyclonal
Glycerol Mounting MediumEMS17989-60With DAPI+DABCO
HemocytometerMillipore Sigma
HEPESFisher ScientificBP310-500Solid
ImageJOpen platformWith Fiji plugins
Immuno Mount DAPIEMS17989-97
KRM-II-08experimental compounds not available from a commercial source
Leica Application Suite XLeica Microsystems
Leukemia Inhibitory FactorNovusN276314100U
Magnesium ChlorideSigma AldrichM9272Hexahydrate
Microscope, ConfocalLeicaSP8
Microscope, LightVWR76382-982DMiL Inverted
MTS - Promega One StepPromegaG3581
Multi-channel pipette, 0.5-10 µLEppendorfZ683914
Multi-channel pipette, 10-100 µLEppendorfZ683930
Multi-channel pipette, 30-300 µLEppendorfZ683957
Neurobasal-A MediumGibco10888022Without vitamin A
Neurobasal-A MediumGibco12348-017Phenol red free
Non-Essential Amino AcidsGibco11140-050
NOR-QH-II-66experimental compounds not available from a commercial source
ParafilmFisher Scientific50-998-9444 inch width
Perfusion SystemNanion4000120
Phosphate Bufered SalineFisher ScientificAAJ75889K2Reagent grade
Poly-D-LysineFisher ScientificA3890401
Poly-L-LysineSigma Life SciencesP4707
Potassium ChlorideSigma Life SciencesP5405
Primary AntibodyInvitrogenMA5-34653Rabbit Monoclonal
PropofolFisher ScientificNC07586761 mL ampule
QH-II-66experimental compounds not available from a commercial source
Reagent ReservoirsVWR89094-664Sterile
Slides, 75 x 25 mmFisher Scientific12-544-7Frosted one side
Sodium BicarbonateCorning25-035-Cl
Sodium ChlorideFisher ScientificS271-3
Sodium PyruvateGibco11360-070
Synth-a-Freeze MediumGibcoR00550Cryopreservation
TMREFisher Scientific50-196-4741Reagent
TMRE KitAbcamAB113852Kit
Triton X-100Sigma AldrichNC0704309
Trypan BlueGibco15-250-061Solution, 0.4%
Trypsin/EDTAGibco25200-072Solution, 0.25%
Vortex MixerVWR97043-562
Whatman Filter PaperFisher Scientific09-927-841

  1. Prevarskaya, N., Skryma, R., Shuba, Y. Ion channels in cancer: Are cancer hallmarks oncochannelopathies. Physiological Reviews. 98 (2), 559-621 (2018).
  2. Rao, R., et al. Ligand-gated neurotransmitter receptors as targets for treatment and management of cancers. Frontiers in Physiology. 13, 839437 (2022).
  3. Mohr, C. J., et al. Cancer-associated intermediate conductance Ca2+-activated K+ channel KCa3.1. Cancers. 11 (1), 109 (2019).
  4. Fels, B., Bulk, E., Petho, Z., Schwab, A. The role of TRP channels in the metastatic cascade. Pharmaceuticals. 11 (2), 48 (2018).
  5. Eil, R., et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature. 537 (7621), 539-543 (2016).
  6. Haustrate, A., Hantute-Ghesquier, A., Prevarskaya, N., Lehen'kyi, V. Monoclonal antibodies targeting ion channels and their therapeutic potential. Frontiers in Pharmacology. 10, 606 (2019).
  7. Kischel, P., et al. Ion channels: New actors playing in chemotherapeutic resistance. Cancers. 11 (3), 376 (2019).
  8. Tuszynski, J., Tilli, T. M., Levin, M. Ion channel and neurotransmitter modulators as electroceutical approaches to the control of cancer. Current Pharmaceutical Design. 23 (32), 4827-4841 (2017).
  9. Kale, V. P., Amin, S. G., Pandey, M. K. Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochimica Biophysica Acta. 1848 (10), 2747-2755 (2015).
  10. Wickenden, A., Priest, B., Erdemli, G. Ion channel drug discovery: Challenges and future directions. Future Medicinal Chemistry. 4 (5), 661-679 (2012).
  11. Rocha, P. R. F., Elghajiji, A., Tosh, D. Ultrasensitive system for electrophysiology of cancer cell populations: A review. Bioelectricity. 1 (3), 131-138 (2019).
  12. Sengupta, S., et al. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth. Acta Neuropathologica. 127 (4), 593-603 (2014).
  13. Jonas, O., et al. First in vivo testing of compounds targeting Group 3 medulloblastomas using an implantable microdevice as a new paradigm for drug development. Journal of Biomedical Nanotechnology. 12 (6), 1297-1302 (2016).
  14. Kallay, L., et al. Modulating native GABAA receptors in medulloblastoma with positive allosteric benzodiazepine-derivatives induces cell death. Journal of Neurooncology. 142 (3), 411-422 (2019).
  15. Pomeranz Krummel, D. A., et al. Melanoma cell intrinsic GABAA receptor enhancement potentiates radiation and immune checkpoint response by promoting direct and T cell-mediated anti-tumor activity. International Journal of Radiation Oncology, Biology, Physics. 109 (4), P1040-P1053 (2021).
  16. Bhattacharya, D., et al. Therapeutically leveraging GABAA receptors in cancer. Experimental Biology and Medicine. 246 (19), 2128-2135 (2021).
  17. Mazia, D., Schatten, G., Sale, W. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. Journal of Cell Biology. 66 (1), 198-200 (1975).
  18. Wiatrak, B., Kubis-Kubiak, A., Piwowar, A., Barg, E. PC12 cell line: Cell types, coating of culture vessels, differentiation and other culture conditions. Cells. 9 (4), 958 (2020).
  19. Baker, J. R. Fixation in cytochemistry and electron-microscopy. Journal of Histochemistry and Cytochemistry. 6 (5), 303-308 (1958).
  20. Chung, J. Y., et al. Histomorphological and molecular assessments of the fixation times comparing formalin and ethanol-based fixatives. Journal of Histochemistry and Cytochemistry. 66 (2), 121-135 (2018).
  21. Crowley, L. C., Christensen, M. E., Waterhouse, N. J. Measuring mitochondrial transmembrane potential by TMRE staining. Cold Spring Harbor Protocols. 2016 (12), (2016).
  22. Cory, A. H., Owen, T. C., Barltrop, J. A., Cory, J. G. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Communications. 3 (7), 207-212 (1991).
  23. Maro, B., Marty, M. C., Bornens, M. In vivo and in vitro effects of the mitochondrial uncoupler FCCP on microtubules. EMBO Journal. 1 (11), 1347-1352 (1982).
  24. Zheng, J., et al. Mechanism for regulation of melanoma cell death via activation of thermo-TRPV4 and TRPV. Journal of Oncology. 2019, 7362875 (2019).
  25. Konno, K., Watanabe, M., Luján, R., Ciruela, F. Immunohistochemistry for ion channels and their interacting molecules: Tips for improving antibody accessibility. Receptor and Ion Channel Detection in the Brain. , (2016).
  26. Mortensen, M., Smart, T. G. Single-channel recording of ligand-gated ion channels. Nature Protocols. 2 (11), 2826-2841 (2007).
  27. Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J., van Bree, C. Clonogenic assay of cells in vitro. Nature Protocols. 1 (5), 2315-2319 (2006).
  28. Rafehi, H., et al. Clonogenic assay: Adherent cells. Journal of Visualized Experiments. (49), 2573 (2011).
  29. Scudiero, D. A., et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Research. 48 (17), 4827-4833 (1988).
  30. Wang, P., Henning, S. M., Heber, D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One. 5, e10202 (2010).
  31. Berridge, M. V., Tan, A. S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Archives of Biochemistry and Biophysics. 303 (2), 474-482 (1993).
  32. Plumb, J. A., Milroy, R., Kaye, S. B. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Research. 49 (16), 4435-4440 (1989).
  33. Chakrabarti, R., Kundu, S., Kumar, S., Chakrabarti, R. Vitamin A as an enzyme that catalyzes the reduction of MTT to formazan by vitamin C. Journal of Cellular Biochemistry. 80 (1), 133-138 (2000).
  34. Dong, G. W., Preisler, H. D., Priore, R. Potential limitations of in vitro clonogenic drug sensitivity assays. Cancer Chemotherapy and Pharmacology. 13 (3), 206-210 (1984).
  35. Sun, J., et al. STIM1- and Orai1-Mediated Ca2+oscillation orchestrates invadopodium formation and melanoma invasion. Journal of Cell Biology. 207 (4), 535-548 (2014).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved