JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Tuina Manipulation to Reduce Inflammation and Cartilage Loss in Knee Osteoarthritis Rats

Published: June 30th, 2023

DOI:

10.3791/65451

1Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine
* These authors contributed equally

We present a protocol for Tuina manipulation performed on plaster-immobilized-induced knee osteoarthritis rats. Based on the preliminary results, it suggested that the efficacy of the method relied on the reduction of inflammation and cartilage loss.

Clinical trials suggest that Tuina manipulation is effective in treating knee osteoarthritis (KOA), while further studies are required to discover its mechanism. Therefore, the manipulation of animal models of knee osteoarthritis is critical. This protocol provides a standard process for Tuina manipulation on KOA rats and a preliminary exploration of the mechanism of Tuina for KOA. The press and kneading manipulation method (a kind of Tuina manipulation that refers to pressing and kneading the specific area of the body surface) is applied on 5 acupoints around the knee joint of rats. The force and frequency of the manipulation were standardized by finger pressure recordings, and the position of the rat during manipulation is described in detail in the protocol. The effect of manipulation can be measured by pain behavior tests and microscopic findings in synovial and cartilage. KOA rats showed significant improvement in pain behavior. The synovial tissue inflammatory infiltration was reduced in the Tuina group, and the expression of tumor necrosis factor (TNF)-α was significantly lower. Compared to the control group, chondrocyte apoptosis was less in the Tuina group. This study provides a standardized protocol for Tuina manipulation on KOA rats and preliminary proof that the therapeutic effects of Tuina may be related to reducing synovial inflammation and delayed chondrocyte apoptosis.

Knee osteoarthritis (KOA) is a degenerative disease mainly manifested in joint pain. Fibrosis, cracking, ulceration, and loss of articular cartilage are the main causes of this disease1. KOA has a high prevalence and may result in a profound impact on the daily life of patients, causing disability in severe cases. Among people aged 45-84 years, the prevalence of KOA increases with age, and the prevalence among people aged 85 years and above is 15%, with a predominance in women2,3. In addition, KOA might bring a serious economic burden on both the individual and the society. A survey sho....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study has passed the animal ethics review conducted by the experimental animal ethics committee of Yueyang Hospital of integrated traditional Chinese and western medicine affiliated with Shanghai University of Traditional Chinese Medicine (YYLAC-2022-166).

1. Experimental animal preparation and grouping

  1. Animal Preparation
    1. Rear a total of 10 healthy SPF SD female rats of 200-220 g at room temperature (18-21 °C), humidity 40%-50%, 12 h: 12 h cir.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Pain behavior tests
The MWT results showed that the MWT of the right hind limb after modeling was significantly lower than before (p<0.05). Compared with the control group, the MWT of rats was significantly elevated after Tuina (p<0.05; Figure 5 and Table 2).

Figure 5
Figure.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study provides a protocol for Tuina manipulation on KOA rats. Through pain behavior tests and histomorphological findings, it suggested that such a series of Tuina manipulation applied to KOA rats could reduce synovial inflammation and cartilage apoptosis, which could be a reference of Tuina manipulation on animal models of KOA.

There are several critical procedures during the protocol. First, it's important to choose an appropriate method for inducing the KOA model. There are various.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by Shanghai Critical Clinical Specialties Construction Project (Grant Number: Shslczdzk04001); the Sailing program of Shanghai Science and Technology Commission (Grant Number: 22YF1444300); Projects within the budget of Shanghai University of Traditional Chinese Medicine (Grant Number: 2021LK091).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
absolute ethanol Supelco PHR1070 For making specimen
ALMEMO admeasuring apparatus ahlborn 2450-1 For Mechanical Withdrawal Threshold test
Anti-Digoxin antibody Sigma-Aldrich SAB4200669 For HE stain IHC or TUNEL
Anti-IL-1 beta abcam ab283818 For HE stain IHC or TUNEL
DAB Substrate kit Solarbio DA1010 For HE stain IHC or TUNEL
Denture base materials Shanghai New Century 20000356 For model making
eosin bioswamp  PAB180016  For HE stain IHC or TUNEL
Finger pressure recordings Suzhou Changxian Optoelectronic Technology CX1003w For Tuina manipulation
formic acid solution Sigma-Aldrich 695076 For decalcification
H2O2 Sigma-Aldrich 386790-M For HE stain IHC or TUNEL
hematoxylin bioswamp  PAB180015 For HE stain IHC or TUNEL
Isoflurane Shanghai Yuyan Scientific Instrument Company S10010533 For gas anesthesia
neutral resins bioswamp  PAB180017 For HE stain IHC or TUNEL
Paraformaldehyde Fix Solution Sigma-Aldrich 100496 For histology
PBS Sigma-Aldrich P3813 For HE stain IHC or TUNEL
Plantar Test Apparatus IITC Life Science / For Paw Withdrawal Latency test
plaster of Paris bandage WANDE 20150023 For model making
Proteinase K Sigma-Aldrich 124568 For HE stain IHC or TUNEL
TNF Alpha Monoclonal antibody Proteintech 60291-1-Ig For HE stain IHC or TUNEL
TUNEL  Servicebio GDP1042 For HE stain IHC or TUNEL
Wax Sigma-Aldrich 327204 For making specimen
xylene Shanghai Sinopharm Group 100092 For making specimen

  1. Joint Surgery Group of Chinese Orthopaedic Association, Chinese Association of Orthopaedic Surgeons, National Clinical Research Center for Geriatric Diseases, Chinese Journal of Orthopaedics. Chinese Osteoarthritis Treatment Guidelines (2021 Edition). Chinese Journal of Orthopaedics. 41 (18), 24 (2021).
  2. David, S., et al. Epidemiology of knee osteoarthritis in general practice: a registry-based study. BMJ Open. 10 (1), 031734 (2020).
  3. Callahan, L. F., Cleveland, R. J., Allen, K. D., Golightly, Y. Racial/Ethnic, Socioeconomic, and Geographic Disparities in the Epidemiology of Knee and Hip Osteoarthritis. Rheumatic Disease Clinics of North America. 47 (1), 1-20 (2021).
  4. Wang, K., Dong, X., Lin, J. H. Investigation of Medical Costs of Disease In Patients With Osteoarthritis of the Knee Joint. National Medical Journal of China. 97 (1), 4 (2017).
  5. Perlman, A., et al. Efficacy and Safety of Massage for Osteoarthritis of the Knee: a Randomized Clinical Trial. Journal of General Internal Medicine. 34 (3), 379-386 (2019).
  6. Xing, H., et al. Therapeutic massage for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Journal of Acupuncture and Tuina Science. 19 (5), 354-363 (2021).
  7. Seo, B. R., et al. Skeletal muscle regeneration with robotic actuation-mediated clearance of neutrophils. Science translational medicine. 13 (614), (2021).
  8. Wu, J. H., Zhang, C., Dong, S. J., Yin, H. Effects of Massage with #34;Relaxing Tendons&#34; Technique on the Interleukin-1B and 5-hydroxytryptamine Levels in the Joint Fluid of a Rabbit Knee Osteoarthritis Model. Chinese General Practice. 21 (6), 688-693 (2018).
  9. Luo, R. The effects of IL-1B,IL-6,IL-13,IL-26,TNF-a by patellar manipulations on rabbit knee osteoarthritis model. Guangxi University of Traditional Chinese Medicine. , (2017).
  10. Qiu, F., Li, C., Wu, X., Liu, Y., Zhang, X. Effect of Massage on the Function of Foot-Yangming Meridian-Muscle in Patients with Knee Osteoarthritis. Acta Chinese Medicine. 36 (3), 649-655 (2021).
  11. Yang, B., Li, S. Research Progress of Massage in Improving Biomechanical Indexes of Knee Osteoarthritis. Acta Chinese Medicine. 37 (12), 2571-2576 (2022).
  12. Li, C., Qiu, F., Ding, J., Hu, G., Zhang, X. Curative Observation of Retaining of Heated Needle at Trigger Points Combined with Manipulation for Muscles along Meridians in Treating Knee Osteoarthritis. Journal of Guangzhou University of Traditional Chinese Medicine. 37 (11), 2157-2162 (2020).
  13. Ding, X., Zhang, X., Hou, Y., Zhao, Z., Ye, X. Effect of massage manipulation on joint stiffness of knee osteoarthritis patients based on &#34;spine-pelvis-knee&#34; holistic diagnosis and treatment pattern. Shanghai Journal of Traditional Chinese Medicine. 55 (08), 54-57 (2021).
  14. Fu, Y., Gong, L., Li, Y. The clinical studies of Rolling combined with Pulling Manipulation on Early and Middle-term. Jilin Journal of Chinese Medicine. 40 (07), 958-962 (2020).
  15. Jiang, J., Hu, X., Tang, R., Qiu, F., Huang, L. Change of lower limb force line in treating knee osteoarthritis with manipulation. Journal of Changchun University of Chinese Medicine. 34 (01), 129-132 (2018).
  16. Liang, Y., et al. Some issues on animal experiments standardization of acupuncture and moxibustion. Lishizhen Medicine and Materia Medica Research. 25 (09), 2299-2300 (2014).
  17. Guo, Y., Liu, Y., Liu, Q., Chen, Z., Zhao, X. Basic System of Chinese Acupuncture Standard. Chinese Acupuncture & Moxibustion. 31 (6), 549-550 (2011).
  18. YAN, X., Yan, J. Study on the Standardization of Classification of Tuina Manipulation. Acta Chinese Medicine. 32 (5), 875-878 (2017).
  19. Aikebaier, G., Lu, X., Liu, J., Liu, l., Wang, S. Analysis on Manipulation and Acupoint Selection Laws of Massage for Treatment of Knee Osteoarthritis Based on Data Mining Technology. Chinese Journal of Information on Traditional Chinese Medicine. 29 (5), 23-29 (2022).
  20. Gong, L., Wuquan, S., Zhang, H., Chen, Z. Research of Yan Juntao's Academic Experiences of Differential Treatment and Manipulation for Treating of Knee Osteoarthritis. Chinese Journal of Traditional Medical Traumatology & Orthopedics. 24 (7), 16-19 (2016).
  21. Qian, J., Xing, X., Liang, J. Two Methods to Establish Rat Model of Osteoarthritis of the Knee. Research and Exploration in Laboratory. 33 (11), 23-27 (2014).
  22. Liu, J., et al. Experimental study of a modified Videman method for replicating knee osteoarthritis on rabbit. Rehabilitation Medicine. 30 (03), 212-219 (2020).
  23. Moskowitz, R. W. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis and Cartilage. 14 (1), 1-2 (2005).
  24. Shen, M., Li, Z., Shen, J. Preliminary Exploration of Experiment Teaching on Experiment Acupuncture Science. Chinese Medicine Modern Distance Education of China. 7 (02), 130-131 (2009).
  25. Jeong, J., et al. Anti-osteoarthritic effects of ChondroT in a rat model of collagenase-induced osteoarthritis. BMC complementary and alternative medicine. 18 (1), 131 (2018).
  26. Hulth, A., Lindberg, L., Telhag, H. Experimental osteoarthritis in rabbits. Preliminary report. Acta orthopaedica Scandinavica. 41 (5), 522-530 (1970).
  27. Tawonsawatruk, T., Sriwatananukulkit, O., Himakhun, W., Hemstapat, W. Comparison of pain behaviour and osteoarthritis progression between anterior cruciate ligament transection and osteochondral injury in rat models. Bone & Joint Research. 7 (3), 244-251 (2018).
  28. Zhou, Q., et al. Cartilage matrix changes in contralateral mobile knees in a rabbit model of osteoarthritis induced by immobilization. BMC musculoskeletal disorders. 16, 224 (2015).
  29. Zeng, J., et al. Establishment and identification of experimental rabbit model of knee osteoarthritis. Chinese Journal of Clinical Research. 29 (5), 679-682 (2016).
  30. Shang, P., et al. Comparison with two kind osteoarthritis animal models reduced by plaster immobilization in extend excessive position and bend excessive position respectively. Orthopaedic Biomechanics Materials and Clinical Study. (1), 11-14 (2006).
  31. He, Y., et al. Evaluation of the effect of improved cast immobilization method on rabbit knee osteoarthritis model. Chinese Imaging Journal of Integrated Traditional and Western Medicine. 18 (2), 198-219 (2020).
  32. Pengfei, S., et al. Possible mechanism underlying analgesic effect of Tuina in rats may involve piezo mechanosensitive channels within dorsal root ganglia axon. Journal of Traditional Chinese Medicine. 38 (6), 834-841 (2018).
  33. Wang, Y. Mechanisms of Massage Mediating Chondrocyte Apoptosis in Knee Osteoarthritis Through Piezo 1/JAK2 Signaling Pathway. Shandong University of Traditional Chinese Medicine. , (2019).
  34. Liu, J. Effect of Massage on TLR4/MyD88 Signal Transduction Pathway in Rat Knee Osteoarthritis Model. Guangzhou University of Traditional Chinese Medicine. , (2019).
  35. Yu, S., Zhou, J., Pang, X. Advances in induced animal models of knee osteoarthritis. Journal of Guangxi University of Chinese Medicine. 25 (5), 50-55 (2022).
  36. Tan, Q., et al. Acupuncture combined with moxibustion regulates the expression of circadian clock protein in the synovium of rats with osteoarthritis. Chinese Journal of Tissue Engineering Research. 26 (11), 1714-1719 (2022).
  37. Zhang, Z., et al. A Review of Massage Therapy for Knee Osteoarthritis. Henan Traditional Chinese Medicine. 39 (1), 146-149 (2019).
  38. Gong, L., Sun, W., Zhang, H., Chen, Z. Research of Yan Juntao's Academic Experiences of Differential Treatment and Manipulation for Treating of Knee Osteoarthritis. Chinese Journal of Traditional Medical Traumatology & Orthopedics. 24 (7), 16-19 (2016).
  39. Chen, C., Zhang, H. Research on the rules of acupoint selection for the treatment of knee osteoarthritis with massage based on data mining. Hainan Medical Journal. 29 (18), 2617-2619 (2018).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved