Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The aim of this manuscript is to examine the use of the rabies indirect fluorescent antibody test for the detection of rabies-specific IgG and IgM antibodies.

Abstract

The rabies indirect fluorescent antibody (IFA) test was developed to detect various rabies-specific antibody isotypes in sera or cerebral spinal fluid. This test provides rapid results and can be used to detect rabies antibodies in several different scenarios. The rabies IFA test is especially useful for the quick and early detection of antibodies to evaluate the immune response in a patient who has developed rabies. Although other methods for antemortem rabies diagnosis take precedence, this test may be utilized to demonstrate recent rabies virus exposure through antibody detection. The IFA test does not provide a virus-neutralizing antibody (VNA) titer, but the pre-exposure prophylaxis (PrEP) response can be evaluated through positive or negative antibody presence. This test can be utilized in various situations and can provide results for a number of different targets. In this study, we used several paired serum samples from individuals who received PrEP and demonstrated their rabies antibody presence over time using the IFA test.

Introduction

The rabies indirect fluorescent antibody (IFA) test is used to detect various rabies-specific antibody isotypes in sera or cerebral spinal fluid. It is one of an arsenal of tests available for monitoring an antemortem rabies patient. It is especially useful for the early detection of antibodies to evaluate a patient's immune response to rabies infection. When used in conjunction with other tests, case history, and the patient's vaccination status, the IFA test can assist in determining exposure to rabies virus or a vaccine1. As the IFA test measures IgM and/or IgG, the values of the specific antibody can indicate an approximate time frame from ....

Protocol

The following protocol has been approved for the ethical use of human samples by the New York State Department of Health Wadsworth Center for assay development, protocol approval number #03-019.

1. Safety

  1. Don personal protective equipment (PPE), at minimum eye protection (glasses or face shield), a surgical mask, and non-latex gloves.
  2. Ensure personnel are vaccinated for rabies and that a titer of ≥0.5 IU/mL has been demonstrated within the past 6 mo.......

Representative Results

All serum samples were collected from the patients at approximately the same time frames following PrEP. The samples were tested from five different patients at the following time points: 2 weeks after the final rabies vaccine inoculation, 6 months after the rabies vaccine series, and 18 months after the rabies vaccine series. Each serum sample was diluted in series and graded for both IgM and IgG presence, as described in protocol steps 5.2 and 5.3. The antibody value assigned represents the dilution factor where the sa.......

Discussion

The IFA test takes advantage of an antigen-antibody complex, allowing for a labeling site to visualize rabies-specific antibodies. Neuroblastoma or BHK cells are seeded on multi-well PTFE-coated microscope slides and inoculated with rabies virus lab strain CVS-11. Once the monolayer is confluent and the cells reach the desired infectivity of approximately 50%, the slides are stored until ready for use6.

Patient serum or CSF is applied to the infected cell monolayer and .......

Acknowledgements

We are grateful to the New York State Department of Health Wadsworth Center for supporting this project.

....

Materials

NameCompanyCatalog NumberComments
25x55mm glass cover slipsAny
AcetoneAny
Anti-Human IgG Labeled ConjugateSigma-AldrichF9512
Anti-Human IgM Labeled ConjugateSeraCare5230-0286
Aspirating pipette tipAny
BHK-21 CellsATCCCCL-10
BION IFA DiluentMBL BIONDIL-9993
Cell Culture waterSigma-AldrichW3500EGM
Coplin JarsAny
Fetal Bovine Serum Sigma-AldrichF2442EGM
Fluorescent microscope with FITC filterAny
GlycerolSigma-AldrichG7893Mountant
Gullsorb IgM inactivation reagentFisher Scientific23-043-158IgG Inactivation Reagent
L-GlutamineSigma-AldrichG-7513EGM
Minimum Essential Media Eagle – w/Earle’s salts, L-glutamine, and non-essential amino acids, w/o sodium bicarbonateSigma-AldrichM0643EGM
Mouse Neuroblastoma CellsATCCCCL-131
Multi-well Teflon coating glass slidesAny
PBSAnypH 7.6 
PenicillinSigmaP-3032EGM
Rabies Direct Fluorescent Antibody ConjugateMillipore Sigma5100, 5500 or 6500
Sodium bicarbonateSigma-AldrichS-5761EGM
Sodium Chloride crystalsSigma-AldrichS5886Mountant
Sterile dropperAny
Streptomycin sulfate saltSigmaS9137EGM
Trizma pre-set crystals pH 9.0Sigma-AldrichS9693Mountant
Tryptose Phosphate BrothBD260300EGM
Vitamin mixSigma-AldrichM6895EGM

References

  1. Rupprecht, C. E., Fooks, A. R., Abela-Ridder, B. Laboratory Techniques in Rabies. Volume 1. World Health Organization. , 232-245 (2018).
  2. Moore, S. M. Challenges of rabies serology: defining context of interpretation. ....

Explore More Articles

Rabies IgGRabies IgMRabies Indirect Fluorescent Antibody TestRabies Antibody DetectionNeutralizing Antibody AssayPre exposure ProphylaxisPost exposure ProphylaxisAntemortem Rabies DiagnosisVirus neutralizing Antibody Titer

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved