A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Senkronize zaman serisi deneylerini analiz etmenin bir zorluğu, deneylerin genellikle senkronizasyondan ve hücre döngüsü periyodundan kurtarma uzunluğunda farklılık göstermesidir. Bu nedenle, farklı deneylerden elde edilen ölçümler toplu olarak analiz edilemez veya kolayca karşılaştırılamaz. Burada, faza özgü karşılaştırmalara izin vermek için deneyleri hizalamak için bir yöntem açıklanmaktadır.

Abstract

Hücre döngüsünün araştırılması, genellikle, hücreler hücre döngüsünü geçerken bir zaman serisindeki çeşitli parametreleri ölçmek için hücre popülasyonlarının senkronize edilmesine bağlıdır. Bununla birlikte, benzer koşullar altında bile, tekrarlanan deneyler, senkronizasyondan kurtulmak ve hücre döngüsünü geçmek için gereken sürede farklılıklar gösterir, böylece her zaman noktasında doğrudan karşılaştırmaları önler. Deneyler arasında dinamik ölçümleri karşılaştırma sorunu, mutant popülasyonlarda veya senkron iyileşme süresini ve / veya hücre döngüsü periyodunu etkileyen alternatif büyüme koşullarında daha da kötüleşmektedir.

Daha önce, senkronize hücre popülasyonlarının senkronizasyondan nasıl salındığını ve hücre döngüsü boyunca nasıl ilerlediğini izleyen Hücre Döngüsü Senkron Kaybını Karakterize Etme (CLOCCS) adlı parametrik bir matematiksel model yayınladık. Modelden öğrenilen parametreler daha sonra deneysel zaman noktalarını senkronize zaman serisi deneylerinden normalleştirilmiş bir zaman ölçeğine (yaşam çizgisi noktaları) dönüştürmek için kullanılabilir. Yaşam çizgisi ölçeği, deneyin başlangıcından itibaren dakika cinsinden geçen süreyi temsil etmek yerine, senkronizasyondan hücre döngüsü girişine ve ardından hücre döngüsünün aşamalarına ilerlemeyi temsil eder. Yaşam çizgisi noktaları, senkronize edilmiş popülasyondaki ortalama hücrenin fazına karşılık geldiğinden, bu normalleştirilmiş zaman ölçeği, değişen periyotlara ve iyileşme sürelerine sahip olanlar da dahil olmak üzere deneyler arasında doğrudan karşılaştırmalara izin verir. Ayrıca, model, farklı türler (örneğin, Saccharomyces cerevisiae ve Schizosaccharomyces pombe) arasındaki hücre döngüsü deneylerini hizalamak için kullanılmıştır, böylece evrimsel benzerlikleri ve farklılıkları ortaya çıkarabilecek hücre döngüsü ölçümlerinin doğrudan karşılaştırılmasını sağlamıştır.

Introduction

Hücre döngüsü boyunca ilerlerken senkronize hücre popülasyonları üzerinde yapılan zaman serisi ölçümleri, hücre döngüsü ilerlemesini kontrol eden mekanizmaları araştırmak için standart bir yöntemdir 1,2,3,4,5,6,7,8 . Senkron / serbest bırakma zaman serisi deneyleri arasında karşılaştırmalar yapabilme yeteneği, bu dinamik süreçleri anlamamız için hayati öneme sahiptir. Bulguları doğrulamak için yinelenen ....

Protocol

1. Hücre döngüsü aşaması ve deneysel verilerin toplanması

  1. İstenilen senkronizasyon yöntemini kullanarak hücreleri hücre döngüsüne göre senkronize edin (örneğin, Leman ve ark.18'de tarif edildiği gibi santrifüj elütriasyonu veya Rosebrock 19'da tarif edildiği gibi çiftleşme feromon arresti; hem Leman hem de ark.18 ve Rosebrock 19 da senkronizasyondan serbest bırakma yöntemlerini içerir). Zaman serisi boyunca örneklemeye başlayın, zaman serisinin en az iki tam hücre döngüsü periyodu uzunluğunda olduğundan emin olun ve en uygun şekilde, hücre döngüsü....

Representative Results

Yukarıdaki protokolde ve Şekil 1'deki iş akışında açıklanan adımlar, iki temsili karşılaştırmayı göstermek için beş hücre döngüsü senkronize zaman serisi deneyine uygulanmıştır: farklı senkronizasyon yöntemlerine sahip replikalar (çiftleşme feromonu ve santrifüj elütriasyonu18) ve dizileme platformları (RNA-dizileme [RNA-seq] ve mikrodizi) arasında ve deneysel koşullar arasında. S. cerevisiae ile çoklu deneyler yapılmış v.......

Discussion

Bu makale, senkronize hücre popülasyonları üzerindeki zaman serisi deneylerinden elde edilen verileri daha doğru ve nicel olarak değerlendirmek için bir yöntem sunmaktadır. Yöntem, her deneyi14,15 parametrelendirmek için tomurcuklanan veriler ve akış-sitometrik DNA içerik verileri gibi giriş hücresi döngüsü faz verilerini kullanan bir Bayes çıkarım modeli olan CLOCCS'den öğrenilen parametreleri kullanır. CLOCCS, her bir deneyin parametrel.......

Disclosures

Yazarların açıklayacak çıkar çatışmaları yoktur.

Acknowledgements

S. Campione ve S. Haase, Ulusal Bilim Vakfı (DMS-1839288) ve Ulusal Sağlık Enstitüleri (5R01GM126555) tarafından finanse edildi. Ek olarak, yazarlar makale hakkındaki yorumları ve protokolün beta testi için Huarui Zhou'ya (Duke Üniversitesi) teşekkür eder. Ayrıca Francis Motta (Florida Atlantik Üniversitesi) ve Joshua Robinson'a Java koduyla ilgili yardımları için teşekkür ederiz.

....

Materials

NameCompanyCatalog NumberComments
2x PBSFor Fixative Solution. Described in Leman 2014.
4% formaldehydeFor Fixative Solution.
100% EthanolFor flow cytometry fixation. Described in Haase 2002.
CLOCCShttps://gitlab.com/haase-lab-group/cloccs_alignment.git
Flow CytometerFor flow cytometry protocol.
Githttps://git-scm.com/
Java 19https://www.oracle.com/java/technologies/downloads/#java19
MicroscopeFor counting cells and buds.
Minicondahttps://docs.conda.io/en/latest/
Protease solutionFor flow cytometry protocol. Described in Haase 2002.
RNAse A solutionFor flow cytometry protocol. Described in Haase 2002.
SYTOX Green Nucleic Acid StainInvitrogenS7020For flow cytometry staining. Described in Haase 2002.
TrispH 7.5

References

  1. Tyers, M., Tokiwa, G., Futcher, B. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO Journal. 12 (5), 1955-1968 (1993).
  2. Schwob, E., Nasmyth, K.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

JoVE de Bu AySay 196Hizalamazaman serisitranskriptomiksenkronizasyonh cre d ng sak sitometrisimodelleryaz l m

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved