Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The protocol describes how to monitor electrochemical events on single nanoparticles using surface-enhanced Raman scattering spectroscopy and imaging.

Abstract

Studying electrochemical reactions on single nanoparticles is important to understand the heterogeneous performance of individual nanoparticles. This nanoscale heterogeneity remains hidden during the ensemble-averaged characterization of nanoparticles. Electrochemical techniques have been developed to measure currents from single nanoparticles but do not provide information about the structure and identity of the molecules that undergo reactions at the electrode surface. Optical techniques such as surface-enhanced Raman scattering (SERS) microscopy and spectroscopy can detect electrochemical events on individual nanoparticles while simultaneously providing information on the vibrational modes of electrode surface species. In this paper, a protocol to track the electrochemical oxidation-reduction of Nile Blue (NB) on single Ag nanoparticles using SERS microscopy and spectroscopy is demonstrated. First, a detailed protocol for fabricating Ag nanoparticles on a smooth and semi-transparent Ag film is described. A dipolar plasmon mode aligned along the optical axis is formed between a single Ag nanoparticle and Ag film. The SERS emission from NB fixed between the nanoparticle and the film is coupled into the plasmon mode, and the high-angle emission is collected by a microscope objective to form a donut-shaped emission pattern. These donut-shaped SERS emission patterns allow for the unambiguous identification of single nanoparticles on the substrate, from which the SERS spectra can be collected. In this work, a method for employing the SERS substrate as a working electrode in an electrochemical cell compatible with an inverted optical microscope is provided. Finally, tracking the electrochemical oxidation-reduction of NB molecules on an individual Ag nanoparticle is shown. The setup and the protocol described here can be modified to study various electrochemical reactions on individual nanoparticles.

Introduction

Electrochemistry is an important measurement science for studying charge transfer, charge storage, mass transport, etc., with applications in diverse disciplines, including biology, chemistry, physics, and engineering1,2,3,4,5,6,7. Conventionally, electrochemistry involves measurements over an ensemble — a large collection of single entities such as molecules, crystalline domains, nanoparticles, and surface sites. However,....

Protocol

1. Gap-mode SERS substrate preparation

  1. Clean No. 1 coverslips (see Table of Materials) using an acetone and water wash, as described below. Perform this step in a cleanroom to ensure that no debris or other unwanted matter is deposited onto the coverslips.
    1. Place the coverslips in a slide rack. Use tweezers when moving the coverslips/substrates. Place the slide rack in a glass container, and fill it with acetone.
      CAUTION: Acetone is highly flammable and has.......

Representative Results

Figure 2A shows Ag thin film substrates prepared using an electron beam metal deposition system. The "good" substrate shown in Figure 2A has a homogenous coverage of Ag metal over the glass coverslip, while the "bad" substrate has a non-uniform coverage of Ag. The ultraviolet-visible spectrum of the "good" Ag thin film is shown in Figure 2B, which demonstrates that the film is partially transparent for the vi.......

Discussion

Depositing Cu and Ag thin metal films on clean coverslips is vital to ensure that the final film has a roughness no greater than two to four atomic layers (or a root mean square roughness less than or equal to around 0.7 nm). Dust, scratches, and debris present on the coverslip prior to metal deposition are common issues that prevent the fabrication of the smooth film required to produce donut-shaped emission patterns. Hence, it is recommended to sonicate the coverslips in different solvents before the metal deposition a.......

Acknowledgements

This work was supported by start-up funds from the University of Louisville and funding from Oak Ridge Associated Universities through a Ralph E. Powe Junior Faculty Enhancement Award. The authors thank Dr. Ki-Hyun Cho for creating the image in Figure 1. The metal deposition and SEM were performed at the Micro/Nano Technology Center at the University of Louisville.

....

Materials

NameCompanyCatalog NumberComments
Acetone, microelectronic gradeJ. T. Baker9005-05
Adjustable pipette, Eppendorf Reference 2 5000 mLEppendorf4924000100
Analytical Balance, AB54-S/FACTMetter ToledoN.A.
Atomic Force Microscope, Easy scan 2NanosurfN.A.
AXXIS Electron Beam Thin Film Deposition SystemKurt J. LeskerN.A.
Cary 60 UV-Vis SpectrophotometerAgilentN.A.
Conductive epoxy, two partElectron Microscopy Sciences12642-14
Copper pellets, 99.99% pureKurt J. LeskerEVMCU40EXE
Copper wire, bare, 18 AWGVWR66248-040
Crucible, Graphite E-BeamKurt J. LeskerEVCEB-23
Diamond ScriberTed Pella54484
EMCCD Camera, ProEM HS: 1024BX3Teledyne Princeton InstrumentsN.A.
Epoxy, ClearGorilla GlueN.A.
Glass Tube CutterWheeler-Rex69012
Glass Tube, Borossilicate (OD 0.75", ID 0.62", L 12")McMaster-Carr8729K45
Immersion oil, Type-FOlympusIMMOIL-F30CC
Inverted Microscope, IX73OlympusN.A.
Laser, Excelsior One 642 nm Free spaceSpectra-PhysicsN.A.
LightFieldTeledyne Princeton InstrumentsN.A.
MATLAB 2022bMathWorksN.A.
Micro cover glass (coverslips), 24×60 mm No. 1VWR48404-455
Microscope Smartphone Camera AdapterqhmaQHMC017A-S01
Nile Blue A, pureAcros Organics415690100
Nitrogen, Ultra Pure, CompressedSpecialty GasesN.A.
Objective, UPLanXApo 100× Oil ImmersionOlympus14-910
Polyimide Film, Kapton3M16089-4
Potassium Phosphate MonobasicVWRP285
Potentiostat, 660E CH InstrumentsN.A.
Pt wireAlfa Aesar10956-BS
Scanning Electron Microscope, Apreo C SEMThermo Fischer ScientificN.A.
Si waferTed Pella16006
Silver nanoparticles (nanospheres), NanoXact 0.02 mg/mL in 2 mM citratenanoComposixAGCN60
Silver pellets, 99.99% pureKurt J. LeskerEVMAG40EXE-A
Slide Rack, Wash-N-DryDiversified BiotechWSDR-2000
Smartphone, iPhone 13 miniAppleN.A.
Sodium Phosphate Dibasic HeptahydrateVWR0348
Spectrometer, IsoPlane SCT320Teledyne Princeton InstrumentsN.A.
Tissue Wipers, Light-duty VWR82003-820
Tweezers, KS-04Kaisi HardwareN.A.
Utrasonic Generator, sweepSONIKBlackstone-NEY Ultrasonics809379
Water Ultrapurifier, Sartorius Arium miniSartoriusN.A.

References

  1. O'Mari, O., Vullev, V. I. Electrochemical analysis in charge-transfer science: The devil in the details. Current Opinion in Electrochemistry. 31, 100862 (2022).
  2. Forster, R. J. Microelectrodes: New dimensions in electrochemi....

Explore More Articles

Single NanoparticleSurface enhanced Raman Scattering SERSElectrochemistryMicroscopyCatalysisReaction IntermediatesChemical TransformationsEnsemble Average MeasurementsVibrational SpectroscopyHeterogeneous PerformanceNanoscale HeterogeneityNile BlueAg Nanoparticles

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved