Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

O protocolo descreve como monitorar eventos eletroquímicos em nanopartículas individuais usando espectroscopia de espalhamento Raman e imagens aprimoradas por superfície.

Abstract

O estudo de reações eletroquímicas em nanopartículas individuais é importante para entender o desempenho heterogêneo de nanopartículas individuais. Essa heterogeneidade em nanoescala permanece oculta durante a caracterização média das nanopartículas. Técnicas eletroquímicas têm sido desenvolvidas para medir correntes a partir de nanopartículas isoladas, mas não fornecem informações sobre a estrutura e identidade das moléculas que sofrem reações na superfície do eletrodo. Técnicas ópticas como microscopia de espalhamento Raman intensificado por superfície (SERS) e espectroscopia podem detectar eventos eletroquímicos em nanopartículas individuais e, ao mesmo tempo, fornecer informações sobre os modos vibracionais de espécies de superfície de eletrodos. Neste trabalho, um protocolo para rastrear a oxidação-redução eletroquímica do Azul do Nilo (NB) em nanopartículas únicas de Ag usando microscopia SERS e espectroscopia é demonstrado. Primeiramente, um protocolo detalhado para a fabricação de nanopartículas de Ag em um filme de Ag liso e semitransparente é descrito. Um modo de plásmons dipolar alinhado ao longo do eixo óptico é formado entre uma única nanopartícula de Ag e um filme de Ag. A emissão de SERS do NB fixada entre a nanopartícula e o filme é acoplada ao modo plásmon, e a emissão de alto ângulo é coletada por uma objetiva de microscópio para formar um padrão de emissão em forma de rosquinha. Esses padrões de emissão de SERS em forma de rosquinha permitem a identificação inequívoca de nanopartículas únicas no substrato, a partir das quais os espectros SERS podem ser coletados. Neste trabalho, um método para empregar o substrato SERS como eletrodo de trabalho em uma célula eletroquímica compatível com um microscópio óptico invertido é fornecido. Finalmente, o rastreamento da oxidação-redução eletroquímica de moléculas de NB em uma nanopartícula de Ag individual é mostrado. A configuração e o protocolo aqui descritos podem ser modificados para estudar várias reações eletroquímicas em nanopartículas individuais.

Introduction

A eletroquímica é uma importante ciência de medição para o estudo de transferência de carga, armazenamento de carga, transporte de massa, etc., com aplicações em diversas disciplinas, incluindo biologia, química, física e engenharia 1,2,3,4,5,6,7 . Convencionalmente, a eletroquímica envolve medições sobre um conjunto – uma grande coleção de entidades únicas, como moléculas, domínios cristalinos, nanopartículas e locais de superfície. No e....

Protocol

1. Preparação do substrato SERS em modo de lacuna

  1. Limpe as lamínulas nº 1 (consulte a Tabela de Materiais) usando uma acetona e lavagem com água, conforme descrito abaixo. Execute esta etapa em uma sala limpa para garantir que nenhum detrito ou outra matéria indesejada seja depositada nas tampas.
    1. Coloque as tampas em um rack deslizante. Use pinças ao mover as lamínulas/substratos. Coloque a cremalheira deslizante em um recipiente de vidro e encha-a com acetona.

Representative Results

A Figura 2A mostra substratos de filmes finos de Ag preparados usando um sistema de deposição de metais por feixe de elétrons. O substrato "bom" mostrado na Figura 2A tem uma cobertura homogênea de Ag metálico sobre a lamínula de vidro, enquanto o substrato "ruim" tem uma cobertura não uniforme de Ag. O espectro ultravioleta-visível do filme fino de Ag "bom" é mostrado na Figura 2B, o que demonstra que o filme é parcialmen.......

Discussion

Depositar filmes metálicos finos de e Ag em lamínulas limpas é vital para garantir que o filme final tenha uma rugosidade não superior a duas a quatro camadas atômicas (ou uma rugosidade quadrada média da raiz menor ou igual a cerca de 0,7 nm). Poeira, arranhões e detritos presentes na tampa antes da deposição de metal são problemas comuns que impedem a fabricação da película lisa necessária para produzir padrões de emissão em forma de rosquinha. Assim, recomenda-se sonicar as lamínulas em diferentes sol.......

Disclosures

Os autores declaram não ter interesses financeiros concorrentes.

Acknowledgements

Este trabalho foi apoiado por fundos de start-up da Universidade de Louisville e financiamento de Oak Ridge Associated Universities através de um Ralph E. Powe Junior Faculty Enhancement Award. Os autores agradecem ao Dr. Ki-Hyun Cho pela criação da imagem na Figura 1. A deposição de metais e a MEV foram realizadas no Micro/Nano Technology Center da Universidade de Louisville.

....

Materials

NameCompanyCatalog NumberComments
Acetone, microelectronic gradeJ. T. Baker9005-05
Adjustable pipette, Eppendorf Reference 2 5000 mLEppendorf4924000100
Analytical Balance, AB54-S/FACTMetter ToledoN.A.
Atomic Force Microscope, Easy scan 2NanosurfN.A.
AXXIS Electron Beam Thin Film Deposition SystemKurt J. LeskerN.A.
Cary 60 UV-Vis SpectrophotometerAgilentN.A.
Conductive epoxy, two partElectron Microscopy Sciences12642-14
Copper pellets, 99.99% pureKurt J. LeskerEVMCU40EXE
Copper wire, bare, 18 AWGVWR66248-040
Crucible, Graphite E-BeamKurt J. LeskerEVCEB-23
Diamond ScriberTed Pella54484
EMCCD Camera, ProEM HS: 1024BX3Teledyne Princeton InstrumentsN.A.
Epoxy, ClearGorilla GlueN.A.
Glass Tube CutterWheeler-Rex69012
Glass Tube, Borossilicate (OD 0.75", ID 0.62", L 12")McMaster-Carr8729K45
Immersion oil, Type-FOlympusIMMOIL-F30CC
Inverted Microscope, IX73OlympusN.A.
Laser, Excelsior One 642 nm Free spaceSpectra-PhysicsN.A.
LightFieldTeledyne Princeton InstrumentsN.A.
MATLAB 2022bMathWorksN.A.
Micro cover glass (coverslips), 24×60 mm No. 1VWR48404-455
Microscope Smartphone Camera AdapterqhmaQHMC017A-S01
Nile Blue A, pureAcros Organics415690100
Nitrogen, Ultra Pure, CompressedSpecialty GasesN.A.
Objective, UPLanXApo 100× Oil ImmersionOlympus14-910
Polyimide Film, Kapton3M16089-4
Potassium Phosphate MonobasicVWRP285
Potentiostat, 660E CH InstrumentsN.A.
Pt wireAlfa Aesar10956-BS
Scanning Electron Microscope, Apreo C SEMThermo Fischer ScientificN.A.
Si waferTed Pella16006
Silver nanoparticles (nanospheres), NanoXact 0.02 mg/mL in 2 mM citratenanoComposixAGCN60
Silver pellets, 99.99% pureKurt J. LeskerEVMAG40EXE-A
Slide Rack, Wash-N-DryDiversified BiotechWSDR-2000
Smartphone, iPhone 13 miniAppleN.A.
Sodium Phosphate Dibasic HeptahydrateVWR0348
Spectrometer, IsoPlane SCT320Teledyne Princeton InstrumentsN.A.
Tissue Wipers, Light-duty VWR82003-820
Tweezers, KS-04Kaisi HardwareN.A.
Utrasonic Generator, sweepSONIKBlackstone-NEY Ultrasonics809379
Water Ultrapurifier, Sartorius Arium miniSartoriusN.A.

References

  1. O'Mari, O., Vullev, V. I. Electrochemical analysis in charge-transfer science: The devil in the details. Current Opinion in Electrochemistry. 31, 100862 (2022).
  2. Forster, R. J. Microelectrodes: New dimensions in electrochemi....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Qu micaEdi o 195

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved