A subscription to JoVE is required to view this content. Sign in or start your free trial.
В данной работе мы представляем два протокола для встраивания внеклеточных реакций синтеза белка в макромасштабные гидрогелевые матрицы без необходимости использования внешней жидкой фазы.
Синтетические генные сети предоставляют ученым и инженерам платформу для проектирования и создания новых систем с функциональностью, закодированной на генетическом уровне. В то время как доминирующей парадигмой развертывания генных сетей является клеточное шасси, синтетические генные сети также могут быть развернуты в бесклеточной среде. Многообещающие области применения внеклеточных генных сетей включают биосенсоры, поскольку эти устройства были продемонстрированы против биотических (вирусы Эбола, Зика и SARS-CoV-2) и абиотических (тяжелые металлы, сульфиды, пестициды и другие органические загрязнители) мишеней. Бесклеточные системы, как правило, развертываются в жидкой форме в реакционном сосуде. Однако возможность встраивания таких реакций в физическую матрицу может способствовать их более широкому применению в более широком наборе сред. С этой целью разработаны методы встраивания реакций бесклеточного синтеза белка (CFPS) в различные гидрогелевые матрицы. Одним из ключевых свойств гидрогелей, способствующих этой работе, является высокая водовосстанавливающая способность гидрогелевых материалов. Кроме того, гидрогели обладают физическими и химическими характеристиками, которые являются функционально полезными. Гидрогели можно сублимировать для хранения и регидратировать для последующего использования. Представлены два пошаговых протокола включения и анализа реакций CFPS в гидрогелях. Во-первых, система CFPS может быть включена в гидрогель путем регидратации клеточным лизатом. Затем система внутри гидрогеля может быть индуцирована или экспрессирована конститутивно для полной экспрессии белка через гидрогель. Во-вторых, клеточный лизат может быть введен в гидрогель в точке полимеризации, а вся система может быть сублимирована и регидратирована в более поздней точке с помощью водного раствора, содержащего индуктор для системы экспрессии, закодированной в гидрогеле. Эти методы потенциально позволяют создавать бесклеточные генные сети, которые наделяют гидрогелевые материалы сенсорными способностями, с потенциалом использования за пределами лаборатории.
Синтетическая биология объединяет различные инженерные дисциплины для проектирования и конструирования биологически обоснованных деталей, устройств и систем, которые могут выполнять функции, не встречающиеся в природе. Большинство подходов синтетической биологии по-прежнему привязаны к живым клеткам. В отличие от них, бесклеточные системы синтетической биологии обеспечивают беспрецедентный уровень контроля и свободы в проектировании, обеспечивая большую гибкость и сокращение времени для разработки биологических систем, устраняя при этом многие ограничения, присущие традиционным методам клеточной экспрессии генов 1,2,3
1. Клеточный лизатный буфер и подготовка среды
В этом протоколе подробно описаны два метода встраивания реакций CFPS в гидрогелевые матрицы, а на рисунке 1 представлен схематический обзор этих двух подходов. Оба способа поддаются сублимационной сушке и длительному хранению. Метод А является наиболее используемой мет.......
Здесь описаны два протокола для включения реакций CFPS на основе лизата клеток E. coli в агарозные гидрогели. Эти методы позволяют обеспечить одновременную экспрессию генов по всему материалу. Протокол может быть адаптирован для других систем CFPS и был успешно проведен с коммерчески до.......
Авторы выражают глубокую признательность Научно-исследовательскому совету по биотехнологии и биологическим наукам за поддержку наград BB/V017551/1 (S.K., T.P.H.) и BB/W01095X/1 (A.L., T.P.H.), а также Исследовательского совета по инженерным и физическим наукам - Оборонные научно-технические лаборатории EP/N026683/1 (C.J.W., A.M.B., T.P.H.). Данные, подтверждающие данную публикацию, находятся в открытом доступе по адресу: 10.25405/data.ncl.22232452. В целях открытого доступа автор применил лицензию Creative Commons Attribution (CC BY) к любой версии рукописи, принятой автором.
....Name | Company | Catalog Number | Comments |
Material | |||
3-PGA | Santa Cruz Biotechnology | sc-214793B | |
Acetic Acid | Sigma-Aldrich | A6283 | |
Agar | Thermo Fisher Scientific | A10752.22 | |
Agarose | Severn Biotech | 30-15-50 | |
Amino Acid Sampler Kit | VWR | BTRABR1401801 | |
ATP | Sigma-Aldrich | A8937-1G | |
cAMP | Sigma-Aldrich | A9501-1G | |
Coenzyme A (CoA) | Sigma-Aldrich | C4282-100MG | |
CTP | Alfa Aesar | J14121.MC | |
DTT | Thermo Fisher Scientific | R0862 | |
Folinic Acid | Sigma-Aldrich | F7878-100MG | |
GTP | Carbosynth | NG01208 | |
HEPES | Sigma-Aldrich | H4034-25G | |
K-glutamate | Sigma-Aldrich | G1149-100G | |
Lysozyme | Sigma-Aldrich | L6876-1G | |
Mg-glutamate | Sigma-Aldrich | 49605-250G | |
NAD | Sigma-Aldrich | N6522-250MG | |
PEG-8000 | Promega | V3011 | |
Potassium Hydroxide (KOH) | Sigma-Aldrich | 757551-5G | |
Potassium Phosphate Dibasic (K2HPO4) | Sigma-Aldrich | P3786-500G | |
Potassium Phosphate Monobasic (KH2PO4) | Sigma-Aldrich | RDD037-500G | |
Protease Inhibitor cocktail | Sigma-Aldrich | P2714-1BTL | |
Qubit Protein concentration kit | Thermo Fisher Scientific | A50668 | |
Rossetta 2 DE 3 E.coli | Sigma-Aldrich | 71397-3 | |
Sodium Chloride (NaCl) | Sigma-Aldrich | S9888-500G | |
Spermidine | Sigma-Aldrich | 85558-1G | |
Tryptone | Thermo Fisher Scientific | 211705 | |
Tris | Sigma-Aldrich | GE17-1321-01 | |
tRNA | Sigma-Aldrich | 10109541001 | |
UTP | Alfa Aesar | J23160.MC | |
Yeast Extract | Sigma-Aldrich | Y1625-1KG | |
Equipment | |||
1.5 mL microcentrifuge tubes | Sigma-Aldrich | HS4323-500EA | |
10K MWCO dialysis cassettes | Thermo Fisher Scientific | 66381 | |
15 mL centrifuge tube | Sarstedt | 62.554.502 | |
50 mL centrifuge bottles | Sarstedt | 62.547.254 | |
500 mL centrifuge bottles | Thermo Fisher Scientific | 3120-9500 | |
Alpha 1-2 LD Plus freeze-dryer | Christ | part no. 101521, 101522, 101527 | |
Benchtop Centrifuge | Thermo Fisher Scientific | H-X3R | |
Black 384 well microtitre plates | Fischer Scientific | 66 | |
Cuvettes | Thermo Fisher Scientific | 222S | |
Elga Purelab Chorus | Elga | ##### | |
Eppendorf Microcentrifuge 5425R | Eppendorf | EP00532 | |
High Speed Centrifuge | Beckman Coulter | B34183 | |
JMP license | SAS Institute | 15 | |
Magnetic Stirrer | Fischer Scientific | 15353518 | |
Parafilm | Amcor | PM-966 | |
Photospectrometer (Biophotometer) | Eppendorf | 16713 | |
Pipettes and tips | Gilson | ##### | |
Precision Balance | Sartorius | 16384738 | |
Qubit 2.0 Fluorometer | Thermo Fisher Scientific | Q32866 | |
Shaking Incubator | Thermo Fisher Scientific | SHKE8000 | |
Sonic Dismembrator (Sonicator) | Thermo Fisher Scientific | 12893543 | |
Static Incubator | Sanyo | MIR-162 | |
Syringe and needles | Thermo Fisher Scientific | 66490 | |
Thermo max Q8000 (Shaking Incubator) | Thermo Fisher Scientific | SHKE8000 | |
Varioskan Lux platereader | Thermo Fisher Scientific | VLBL00GD1 | |
Vortex Genie 2 | Cole-parmer | OU-04724-05 | |
VWR PHenomenal pH 1100 L, ph/mv/°c meter | VWR | 662-1657 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved