Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

O método aqui apresentado pode avaliar o efeito dos reagentes na angiogênese ou permeabilidade vascular in vivo sem coloração. O método utiliza injeção de dextran-FITC através da veia caudal para visualizar neovasos ou extravasamento vascular.

Abstract

Vários modelos têm sido desenvolvidos para investigar a angiogênese in vivo. No entanto, a maioria desses modelos é complexa e cara, requer equipamentos especializados ou é de difícil execução para posterior análise quantitativa. Apresentamos aqui um ensaio de plugue de gel de matriz modificado para avaliar a angiogênese in vivo. Nesse protocolo, as células vasculares foram misturadas com gel de matriz na presença ou ausência de reagentes pró-angiogênicos ou antiangiogênicos e, em seguida, injetadas por via subcutânea no dorso dos camundongos receptores. Após 7 dias, tampão fosfato salino contendo dextran-FITC é injetado através da veia caudal e circulado nos vasos por 30 min. Os plugues de gel de matriz são coletados e embebidos com gel de incorporação de tecido, em seguida, cortes de 12 μm são cortados para detecção de fluorescência sem coloração. Neste ensaio, dextran-FITC com alto peso molecular (~150.000 Da) pode ser usado para indicar vasos funcionais para detectar seu comprimento, enquanto dextran-FITC com baixo peso molecular (~4.400 Da) pode ser usado para indicar a permeabilidade de neo-vasos. Em conclusão, este protocolo pode fornecer um método confiável e conveniente para o estudo quantitativo da angiogênese in vivo.

Introduction

A angiogênese, processo de formação de neovasos a partir de vasos pré-existentes, desempenha papel crítico em muitos processos fisiológicos e patológicos, como desenvolvimento embrionário, cicatrização de feridas, aterosclerose, desenvolvimento tumoral, etc.1,2,3,4,5. Esse processo dinâmico envolve várias etapas, incluindo a degradação da matriz, proliferação de células vasculares, migração e auto-organização para formar estruturas tubulares e a estabilização dos neovasos6. A promoçã....

Protocol

Todos os procedimentos envolvendo animais foram aprovados pelo Comitê Institucional de Cuidados e Uso de Animais (IACUC) da Wenzhou Medical University (XMSQ2021-0057, 19 de julho de 2021). Todos os reagentes e consumíveis estão listados na Tabela de Materiais.

1. Preparo do meio de cultura

  1. Meio de cultura 10x M199: Dissolver o pó M199 na concentração de 10x com 90 mL de água deionizada e adicionar 10 mL de soro fetal bovino (SFB), p.......

Representative Results

A Figura 1 é o fluxograma descrevendo como preparar a mistura de gel de matriz, células vasculares, meio de cultura e reagente. A mistura foi então injetada por via subcutânea no dorso de camundongos Nu/Nu e aquecida usando uma almofada de aquecimento para acelerar sua coagulação e, finalmente, formar plugue de gel.

A Figura 2A é o fluxograma para indicar vasos com dextrano marcado fluorescente. O dextran fluorescente marcado f.......

Discussion

Apresentamos um método confiável e conveniente para a avaliação quantitativa da angiogênese in vivo sem coloração. Nesse protocolo, as células vasculares foram misturadas com gel de matriz na presença de reagentes pró-angiogênicos ou antiangiogênicos e, em seguida, injetadas por via subcutânea no dorso de camundongos Nu/Nu para formar plugue de gel (Figura 1). Após 7 dias da formação do plugue de gel, o dextran-FITC foi injetado por via intravenosa e circulado por 30.......

Acknowledgements

Este trabalho foi financiado pela Fundação de Ciências Naturais da Província de Zhejiang (LY22H020005) e pela Fundação Nacional de Ciências Naturais da China (81873466).

....

Materials

NameCompanyCatalog NumberComments
Adhesion Microscope SlidesCITOTEST188105
Anesthesia SystemRWDR640-S1
Cell CounterInvitrogenAMQAX1000
Cell Culture DishCorning430167
CryoslicerThermo FisherCryoStar NX50
Dextrans-FITC-150kDaWEIHUA BIOWH007N07
Dextrans-FITC-4kDaWEIHUA BIOWH007N0705
Embedding CassettesCITOTEST80203-0007
Endothelial Cell MediumScienCell35809
Endothelial Growth SupplementsScienCell1025
Fetal Bovine SerumGibco10100147C
Fibroblast Growth Factor 1AtaGenix9043p-082318-A01FGF1
Fluorescence MicroscopeNikonECLIPSE Ni
Heating PadBoruida30-50-30
Insulin SyringeBD300841
IsofluraneRWDR510-22-10
Laboratory BalanceSartoriusBSA124S-CW
MatrigelCorning356234Matrix gel
Medium 199 powderGibco31100-035
MicrotubesAxygenMCT-150-C
Optimal Cutting Temperature (OCT) CompoundSUKURA4583Tissue embedding gel
Palmitate AcidKunChuangKC001
Penicillin-Streptomycin LiquidSolarbioP1400
Phosphate Buffer SalineSolarbioP1022
Surgical InstrumentsRWDRWD
Tail Vein Injection InstrumentKEW BASISKW-XXY
Trypsin-EDTA SolutionSolarbioT1320
Ultra-Low Temperature FreezereppendorfU410
Vascular Endothelial Growth FactorCHAMOTCM058-5HPVEGF

References

  1. Bikfalvi, A. History and conceptual developments in vascular biology and angiogenesis research: a personal view. Angiogenesis. 20 (4), 463-478 (2017).
  2. Carmeliet, P., Jain, R.

Explore More Articles

Angiog neseIn VivoMatrix Gel Plug AssayC lulas VascularesPr angiog nicasAnti angiog nicasInjetadas SubcutaneamenteCamundongos ReceptoresFosfato Tamp o SalinaDextran FITCVasos FuncionaisNeo vasosDetec o de Fluoresc nciaAn lise Quantitativa

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved