Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This study describes a method to isolate and purify bacterial extracellular vesicles (BEVs) enriched from human feces via density gradient centrifugation (DGC), identifies the physical characteristics of BEVs from morphology, particle size, and concentration, and discusses the potential applications of the DGC approach in clinical and scientific research.

Abstract

Bacterial extracellular vesicles (BEVs) are nanovesicles derived from bacteria that play an active role in bacteria-bacteria and bacteria-host communication, transferring bioactive molecules such as proteins, lipids, and nucleic acids inherited from the parent bacteria. BEVs derived from the gut microbiota have effects within the gastrointestinal tract and can reach distant organs, resulting in significant implications for physiology and pathology. Theoretical investigations that explore the types, quantities, and roles of BEVs derived from human feces are crucial for understanding the secretion and function of BEVs from the gut microbiota. These investigations also necessitate an improvement in the current strategy for isolating and purifying BEVs.

This study optimized the isolation and purification process of BEVs by establishing two density gradient centrifugation (DGC) modes: Top-down and Bottom-up. The enriched distribution of BEVs was determined in fractions 6 to 8 (F6-F8). The effectiveness of the approach was evaluated based on particle morphology, size, concentration, and protein content. The particle and protein recovery rates were calculated, and the presence of specific markers was analyzed to compare the recovery and purity of the two DGC modes. The results indicated that the Top-down centrifugation mode had lower contamination levels and achieved a recovery rate and purity similar to that of the Bottom-up mode. A centrifugation time of 7 h was sufficient to achieve a fecal BEV concentration of 108/mg.

Apart from feces, this method could be applied to other body fluid types with proper modification according to the differences in components and viscosity. In conclusion, this detailed and reliable protocol would facilitate the standardized isolation and purification of BEVs and thus, lay a foundation for subsequent multi-omics analysis and functional experiments.

Introduction

The gut is widely recognized as the organ harboring the most abundant microbial communities in the human body, with over 90% of bacteria involved in colonization and multiplication1,2. Extensive evidence has demonstrated that the gut microbiota modulates the gut microenvironment and simultaneously interacts with dysfunction in distant organs, primarily through an impaired intestinal barrier3,4. Mounting evidence indicates a correlation between the imbalance of gut microbiota and the progression of inflammatory bowel disease (IBD)5

Protocol

The Ethics Committee of Nanfang Hospital, Southern Medical University, sanctioned this study, which was conducted with the informed consent of the participants. All methods employed herein adhered to the standard operating guidelines furnished by the International Human Microbiome Standards (IHMS: http://www.microbiome-standards.org/). All subsequent liquid handling procedures were mandated to be carried out within a biosafety cabinet or an ultra-clean bench.

1. Collection and aliqu.......

Representative Results

Determine the distribution of BEV-enriched fractions
To determine the distribution of bacterial extracellular vesicles (BEVs)-enriched fractions, a blank control was established to measure the absorbance values at OD 340 nm, and the density of each fraction was calculated based on the measurements and iodixanol guidelines (Step 8.1). Table 2 presents the density results, demonstrating that fractions F4 to F9 exhibited densities within the range typically associated with extracellul.......

Discussion

Bacterial extracellular vesicles (BEVs) are lipid-bilayer nanoparticles secreted by bacteria, carrying a wealth of proteins, lipids, nucleic acids, and other bioactive molecules, contributing to mediating the functional effects of bacteria20. BEVs derived from the gut have been verified to be involved in the development of diseases, such as inflammatory bowel disease, Crohn's disease, and colorectal cancer, and also affect general metabolism and mediate impaired cognitive function

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (82025024); the Key project of the National Natural Science Foundation of China (82230080); the National Key R&D Program of China (2021YFA1300604); the National Natural Science Foundation of China (81871735, 82272438, and 82002245); Guangdong Natural Science Fund for Distinguished Young Scholars (2023B1515020058); the Natural Science Foundation of Guangdong Province (2021A1515011639); the Major State Basic Research Development Program ....

Materials

NameCompanyCatalog NumberComments
1 % (w/v) glutaraldehyde (prepared from 2.5 % stock solution in deionized water)ACMECAP1126Morphological observation for BEVs using TEM at Step 8.3.3
1 % (w/v) methylcellulose (prepared from original powder in deionized water)Sigma-AldrichM7027Morphological observation for BEVs using TEM at Step 8.3.6
1.5 % (w/v) uranyl acetate (prepared from original powder in deionized water)Polysciences21447-25Morphological observation for BEVs using TEM at Step 8.3.5
1000 μL, 200 μL, 10 μL PipetteKIRGENKG1313, KG1212, KG1011Transfer the solution
5 % (w/v) bovine serum albumin solution (prepared from the original powder in TBST buffer)Fdbio scienceFD0030Used in western blotting for blocking at Step 8.5.6
5 × loading bufferFdbio scienceFD006Used in western blotting and Coomassie brilliant blue stain at Step 8.5.1
75 % (v/v) alcoholLIRCONLIRCON-500 mLSurface disinfection
96-well plateRarA8096Measure the absorbance values 
Anti-Calnexin antibodyAbcamab92573Western blotting (Primary Antibody)
Anti-CD63 antibodyAbcamab134045Western blotting (Primary Antibody)
Anti-CD9 antibodyAbcamab236630Western blotting (Primary Antibody)
Anti-Flagellin antibodySino Biological40067-MM06Western blotting (Primary Antibody)
Anti-Integrin beta 1 antibodyAbcamab30394Western blotting (Primary Antibody)
Anti-LPS antibodyThermo FisherMA1-83152Western blotting (Primary Antibody)
Anti-LTA antibodyThermo Fisher MA1-7402Western blotting (Primary Antibody)
Anti-OmpA antibodyCUSABIOCSB-PA359226ZA01EOD, https://www.cusabio.com/Western blotting (Primary Antibody)
Anti-Syntenin antibodyAbcamab133267Western blotting (Primary Antibody)
Anti-TSG101 antibodyAbcamab125011Western blotting (Primary Antibody)
AutoclaveZEALWAYGR110DPSterilization for supplies and mediums used in the experiment
BalanceMettler ToledoAL104Balance the tube sample-loaded with PBS
Bicinchoninic acid assay Fdbio scienceFD2001Measure protein content of BEVs at Step 8.2
BioRenderBioRenderhttps://app.biorender.comMake the schematic workflow of BEVs isolation and purification showed in Figure 1
Biosafety cabinetHaierHR1200- II B2Peform the procedures about feces sample handling
Centrifuge 5810 R; Rotor F-34-6-38Eppendorf5805000092; 5804727002, adapter: 5804774000Preprocess for BEVs (Step 3)
Chemiluminescence ApparatusBIO-OIOI600SE-MFUsed in western blotting for signal detection at Step 8.5.12
Cytation 5BioTekF01Microplate detector for measuring the absorbance (Step 8.1) and fluorescence (Figure 6) values 
Dil-labled low density lipoproteinACMECAC12038Definition of distribution of interfering components 
Electrophoresis equipmentBio-rad1658033Used in western blotting for protein separation and transfer at Step 8.5.2, 8.5.3, 8.5.5
Enhanced Chemiluminescence kit HRP Fdbio scienceFD8020Used in western blotting for signal detection at Step 8.5.12
Escherichia coli American Type Culture CollectionATCC8739Isolate BEVs as a positive control. Protocol: Dissolve 25 g of the LB powder in 1 L deionized water, and autoclave. Transfer the 800 μL of preserved Escherichia coli into the medium. Cultivate at 37 °C in the incubator shaker. Then centrifuge at 3, 000 × g for 20 min at 4 °C, 12, 000 × g for 30 min at 4 °C, filter the supernatant through 0.22 μm membrane, and perform ultra-speed centrifugation at 160, 000 × g for 70 min at 4 °C. Pellet defined as crude BEVs from Escherichia coli was suspended in 1.2 mL PBS (Step 3, 4).    
Falcon tubes 50 mLKIRGENKG2811Preprocess for BEVs (Step 3)
Feto Protein Staining BufferAbsciab.001.50Coomassie brilliant blue staining at Step 8.5.4
Filter paperBiosharpBS-TFP-070BMorphological observation for BEVs using TEM at Step 8.3 (Blotting the solution)
Formvar/Carbon supported copper grids Sigma-AldrichTEM-FCF200CU50Morphological observation for BEVs using TEM at Step 8.3
HEPES powderMeilunbioMB6078Prepare iodixanol buffers with different concentrations for density gradient centrifugation
HRP AffiniPure Goat Anti-Mouse IgG (H+L)Fdbio scienceFDM007Western blotting (Secondary Antibody)
HRP AffiniPure Goat Anti-Rabbit IgG (H+L)Fdbio scienceFDR007Western blotting (Secondary Antibody)
Incubator shakerQiangwenDHZ-LCultivate Escherichia coli 
Kimwipesâ„¢ Delicate Task WipesKimtech Science34155Wipe the inner wall of the ultracentrifuge tube at Step 4.15
LB brothHopebioHB0128Cultivate Escherichia coli 
Low temperature freezer (-80 °C)HaierDW-86L338JStore the samples
MethanolAlalddinM116118Used in western blotting for activating PVDF membrane at Step 8.5.5
Micro tubes 1.5 mLKIRGENKG2211Recover fractions after density gradient centrifugation
Micro tubes 2 mLKIRGENKG2911Recover fractions after density gradient centrifugation
Micro tubes 5 mLBBIF610888-0001Recover fractions after density gradient centrifugation
Microplate reader Thermo Fisher Multiskan MK3Measure protein content of BEVs at Step 8.2
Millipore filter 0.22 μmMerck milliporeSLGP033RBFiltration sterilization; Material: polyethersulfone, PES
NaClGHTECH1.01307.040Density gradient centrifugation solution
NaOHGHTECH1.01394.068Density gradient centrifugation solution (pH adjustment)
Optimaâ„¢ XPN-100Beckman CoulterA94469Ultracentrifugation for BEVs isolation at Step 4, 7
OptiPrepâ„¢Serumwerk Bernburg AG1893Density gradient centrifugation stock solution
Orbital ShakerYouningCS-100Dissolve feces at Step 2
Phosphate buffered salineProcellPB180327Dissolve feces at Step 2
PipettorEppendorf3120000267, 3120000259Transfer the solution
Plastic pasteur pipetteABCbioABC217003-4Remove supernatant in preprocessing at Step 3.4
Polyvinylidene difluoride (PVDF) membranesMilliporeISEQ00010, IPVH00010Used in western blotting for protein transfer at Step 8.5.5
Prefabricated polyacrylamide gel, 4–20% 15 WellsACEF15420GelUsed in western blotting for protein separation at Step 8.5.2, 8.5.3
Primary antibody diluentFdbio scienceFD0040Used in western blotting at Step 8.5.8
Protein ladderFdbio scienceFD0672Used in western blotting and Coomassie brilliant blue stain at Step 8.5
Rapid protein blotting solutionUBIOUW0500Used in western blotting for protein transfer at Step 8.5.5
Rotor SW 32 Ti Swinging-Bucket RotorBeckman Coulter369650Ultracentrifugation for BEVs isolation at Step 4, 7
Syringe 20 mL, 50 mL JetwayZSQ-20ML, YCXWJZSQ-50 mLTransfer buffers amd remove supernatant in preprocessing
TBS powderFdbio scienceFD1021Used in western blotting at Step 8.5
Transmission electron microscope (TEM)Hitachi H-7650Morphological observation for BEVs at Step 8.3
Tween-20Fdbio scienceFD0020Used in western blotting at Step 8.5
Ultracentrifuge tubeBeckman326823, 355642Ultracentrifugation for BEVs isolation at Step 4, 7
Ultra-clean benchAIRTECHSW-CJ-2FDPeform the procedures about liquid handling
Water bathBluepardCU600Used for measuring protein content of BEVs at Step 8.2.5
ZetaViewParticle MetrixS/N 21-734, Software ZetaView (version 8.05.14 SP7)Nanoparticle tracking analysis (NTA) for measuring the particle size and concentrarion of BEVs at Step 8.4

References

  1. Costello, E. K., et al. Bacterial community variation in human body habitats across space and time. Science. 326 (5960), 1694-1697 (2009).
  2. Greenhalgh, K., Meyer, K. M., Aagaard, K. M., Wilmes, P.

Explore More Articles

Bacterial Extracellular VesiclesDensity Gradient CentrifugationFecesIsolationPurificationTop downBottom upGut MicrobiotaParticle MorphologyProtein Content

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved