JoVE Logo
Faculty Resource Center

Sign In

Abstract

Medicine

Hepatic Glucose Production, Ureagenesis, and Lipolysis Quantified using the Perfused Mouse Liver Model

Published: October 6th, 2023

DOI:

10.3791/65596

1Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 3Department for Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 4Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 5NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen

The liver has numerous functions, including nutrient metabolism. In contrast to other in vitro and in vivo models of liver research, the isolated perfused liver allows the study of liver biology and metabolism in the whole liver with an intact hepatic architecture, separated from the influence of extra-hepatic factors. Liver perfusions were originally developed for rats, but the method has been adapted to mice as well. Here we describe a protocol for in situ perfusion of the mouse liver. The liver is perfused antegradely through the portal vein with oxygenated Krebs-Henseleit bicarbonate buffer, and the output is collected from the suprahepatic inferior vena cava with clamping of the infrahepatic inferior vena cava to close the circuit. Using this method, the direct hepatic effects of a test compound can be evaluated with a detailed time resolution. Liver function and viability are stable for at least 3 h, allowing the inclusion of internal controls in the same experiment. The experimental possibilities using this model are numerous and may infer insight into liver physiology and liver diseases.

Tags

Keywords Hepatic Glucose Production

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved