A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes methods to prepare peripheral, mature, and nuclear eye lens fiber cells for immunofluorescence staining to study complex cell-to-cell interdigitations and the membrane architecture.
The lens is a transparent and ellipsoid organ in the anterior chamber of the eye that changes shape to finely focus light onto the retina to form a clear image. The bulk of this tissue comprises specialized, differentiated fiber cells that have a hexagonal cross section and extend from the anterior to the posterior poles of the lens. These long and skinny cells are tightly opposed to neighboring cells and have complex interdigitations along the length of the cell. The specialized interlocking structures are required for normal biomechanical properties of the lens and have been extensively described using electron microscopy techniques. This protocol demonstrates the first method to preserve and immunostain singular as well as bundles of mouse lens fiber cells to allow the detailed localization of proteins within these complexly shaped cells. The representative data show staining of the peripheral, differentiating, mature, and nuclear fiber cells across all regions of the lens. This method can potentially be used on fiber cells isolated from lenses of other species.
The lens is a clear and ovoid tissue in the anterior chamber of the eye that is made up of two cell types, epithelial and fiber cells1 (Figure 1). There is a monolayer of epithelial cells that covers the anterior hemisphere of the lens. Fiber cells are differentiated from epithelial cells and make up the bulk of the lens. The highly specialized fiber cells undergo an elongation, differentiation, and maturation programming, marked by distinct changes in cell membrane morphology from the lens periphery to the lens center2,3,4
Mice have been cared for based on an animal protocol approved by the Institutional Animal Care and Use Committee at Indiana University Bloomington. The mice used to generate representative data were control (wild-type) animals in the C57BL6/J background, female, and 8-12 weeks old. Both male and female mice can be used for this experiment, since the sex of the mice is very unlikely to affect the experiment's outcome.
1. Lens dissection and decapsulation
Lens fiber cells are prepared from the lens cortex (differentiating fibers and mature fibers) and the nucleus, and the cells are stained with phalloidin for F-actin and WGA for the cell membrane. A mixture of bundles of cells or single lens fibers (Figure 3) are observed and imaged. From the lens cortex, two types of cells (Figure 3A) are found. Differentiating fiber cells in the lens periphery are straight, with very small protrusions along their short sides. A.......
This protocol has demonstrated the fixation, preservation, and immunostaining methods that faithfully preserve the 3D membrane morphology of bundles or singular lens fiber cells from various depths in the lens. The stained lens fibers are compared with SEM preparations that have long been used to study lens fiber cell morphology. The results show comparable membrane structures between both preparations. EM remains the gold standard for studying cell morphology, but immunolabeling is more challenging in SEM samples for lo.......
This work was supported by grant R01 EY032056 (to CC) from the National Eye Institute. The authors thank Dr. Theresa Fassel and Kimberly Vanderpool at the Scripps Research Core Microscopy Facility for their assistance with the electron microscope images.
....Name | Company | Catalog Number | Comments |
100% Triton X-100 | FisherScientific | BP151-500 | |
60mm plate | FisherScientific | FB0875713A | |
16% paraformaldehyde | Electron Microscopy Sciences | 15710 | |
10X phosphate buffered saline | ThermoFisher | 70011-044 | |
1X phosphate buffered saline | ThermoFisher | 14190136 | |
48-well plate | CytoOne | CC7672-7548 | |
Cover slips (22 x 40 mm) | FisherScientific | 12-553-467 | |
Curved tweezers | World Precision Instruments | 501981 | |
Dissection microscope | Carl Zeiss | Stereo Discovery V8 | |
Fine tip straight tweezers | Electron Microscopy Sciences | 72707-01 | |
Fisherbrand Superfrost Plus Microscope Slides | FisherScientific | 12-550-15 | |
LSM 800 confocal microscope with Airyscan (63X) and Zen 3.5 Software | Carl Zeiss | ||
Nail polish | |||
Normal donkey serum | Jackson ImmunoResearch | 017-000-121 | |
Phalloidin (rhodamine) | ThermoFisher | R415 | |
Primary antibody | |||
Scalpel Feather Disposable, steril, No. 11 | VWR | 76241-186 | |
Secondary antibody | |||
Straight forceps | World Precision Instruments | 11252-40 | |
Thermo Scientific Nunc MicroWell MiniTrays (dissection tray) | FisherScientific | 12-565-154 | |
Ultra-fine scissors | World Precision Instruments | 501778 | |
VECTASHIELD Antifade Mounting Medium with DAPI | Vector Laboratories | H-1200 | |
Wheat germ agglutinin (fluorescein) | Vector Laboratories | FL-1021-5 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved