Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol for an automated cell culture system. This automated culture system reduces labor and benefits the users, including researchers unfamiliar with handling induced pluripotent stem (iPS) cells, from the maintenance of iPS cells to differentiation into various types of cells.

Abstract

Human induced pluripotent stem cells (hiPSCs) with infinite self-proliferating ability have been expected to have applications in numerous fields, including the elucidation of rare disease pathologies, the development of new medicines, and regenerative medicine aiming to restore damaged organs. Despite this, the social implementation of hiPSCs is still limited. This is partly because of the difficulty of reproducing differentiation in culture, even with advanced knowledge and sophisticated technical skills, due to the high sensitivity of iPSCs to minute environmental changes. The application of an automated culture system can solve this issue. Experiments with high reproducibility independent of a researcher's skill can be expected according to a shared procedure across various institutes. Although several automated culture systems that can maintain iPSC cultures and induce differentiation have been developed previously, these systems are heavy, large, and costly because they make use of humanized, multi-articulated robotic arms. To improve on the above issues, we developed a new system using a simple x-y-z axis slide rail system, allowing it to be more compact, lighter, and cheaper. Furthermore, the user can easily modify parameters in the new system to develop new handling tasks. Once a task is established, all the user needs to do is prepare the iPSC, supply the reagents and consumables needed for the desired task in advance, select the task number, and specify the time. We confirmed that the system could maintain iPSCs in an undifferentiated state through several passages without feeder cells and differentiate into various cell types, including cardiomyocytes, hepatocytes, neural progenitors, and keratinocytes. The system will enable highly reproducible experiments across institutions without the need for skilled researchers and will facilitate the social implementation of hiPSCs in a wider range of research fields by diminishing the obstacles for new entries.

Introduction

This article aims to provide actual and detailed handling procedures for an automated culture system for human induced pluripotent stem cells (iPSC), which we produced by collaborating with a company, and to show representative results.

Since the publication of the article in 2007, iPSC has been attracting attention all over the world1. Due to its greatest feature of being able to differentiate into any type of somatic cell, it is expected to be applied in various fields such as regenerative medicine, elucidating the causes of intractable diseases, and developing new therapeutic drugs2,

Protocol

The Ethics Committee of the Kansai Medical University approved the generation and use of the healthy volunteer-derived iPSCs named KMUR001 (approval No. 2020197). The donor, who was openly recruited, provided formal informed consent and agreed with the scientific usage of the cells.

NOTE: The current interface (the special software named "ccssHMI" running under the Windows XP operating system) is the fundamental operation screen. Under the aforementioned interface, a series of tabs are.......

Representative Results

Maintenance of human-induced pluripotent stem cells
We used three hPSC lines (RIKEN-2F, 253G1, and KMUR001). We have optimized the maintenance protocol through daily manually performed experiments and further optimized the detailed programs through the seven preliminary experiments performed by the system. For example, shear stresses caused by the liquid speeds of the spit flow from different pipets handled by humans and the system are quite different; therefore, we optimized the time length of the.......

Discussion

A critical step in the protocol is that if a user finds any faults, click the cancel, stop, or reset button anytime and start over from the first step. The software can avoid human mistakes, including double booking, opening doors while the system tasks are active, and a lack of replenishment. Another critical point for successful and efficient differentiation to the desired somatic cell is the proper selection of pluripotent stem cell lines because each pluripotent stem cell has an uncontrollable bias in its differentia.......

Acknowledgements

This study was supported by a grant from the New Business Promotion Center, Panasonic Production Engineering Co., Ltd., Osaka, Japan.

....

Materials

NameCompanyCatalog NumberComments
0.15% bovine serum albumin fraction VFuji Film Wako Chemical Inc., Miyazaki, Japan9048-46-8
1% GlutaMAXThermo Fisher Scientific35050061
10 cm plastic plates Corning Inc., NY, United States430167
253G1RKEN Bioresource Research CenterHPS0002
2-mercaptoethanolThermo Fisher Scientific21985023
Actinin  mouseAbcamab9465
Activin A Nacali Tesque18585-81
AdenineThermo Fisher ScientificA14906.30
Albumin  rabbitDakoA0001
All-trans retinoic acidFuji Film Wako Chemical Inc. 186-01114
Automated culture systemPanasonic
B-27 supplementThermo Fisher Scientific17504044
bFGFFuji Film Wako Chemical Inc. 062-06661
BMP4 Thermo Fisher ScientificPHC9531
Bovine serum albuminMerck810037
CHIR-99021 MCE, NJ, United States #HY-10182252917-06-9
Defined Keratinocyte-SFMThermo Fisher Scientific10744019Human keratinocyte medium
DexamethasoneMerck266785
Dihexa TRC, Ontario, Canada13071-60-8rac-1,2-Dihexadecylglycerol
Disposable hemocytometerCountessTM Cell Counting Chamber Slides, Thermo Fisher ScientificC10228
DorsomorphinThermo Fisher Scientific1219168-18-9
Dulbecco’s modified Eagle medium/F12 Fuji Film Wako Chemical Inc.12634010
EGFFuji Film Wako Chemical Inc. 053-07751
Essential 8 Thermo Fisher ScientificA1517001Human pluripotent stem cell medium
Fetal bovine serum Biowest, FL, United StatesS140T
FGF-basic Nacalai Tesque Inc.19155-07
ForskolinThermo Fisher ScientificJ63292.MF
GlutamineThermo Fisher Scientific25030081Glutamine supplement
Goat IgG(H+L) AlexaFluo546Thermo ScientificA11056
HNF-4A  goatSantacruz6556
HydrocortisoneThermo Fisher ScientificA16292.06
Hydrocortisone 21-hemisuccinateMerckH2882
iMatrix511 Silk Nippi Inc., Tokyo, Japan892 021Cell culture matrix
Insulin-transferrin-seleniumThermo Fisher Scientific41400045
Keratin 1  mouseSantacruz376224
Keratin 10  rabbitBioLegend19054
KMUR001Kansai Medical University Patient-derived iPSCs 
Knockout serum replacementThermo Fisher Scientific10828010
L-ascorbic acid 2-phosphate A8960, MerckA8960
Leibovitz’s L-15 medium Fuji Film Wako Chemical Inc.128-06075
MatrigelCorning Inc.354277
Mouse IgG(H+L) AlexaFluo488Thermo ScientificA21202
N-2 supplementThermo Fisher Scientific17502048
Nestin mouseSantacruz23927
Neurobasal mediumThermo Fisher Scientific21103049
Neurofilament  rabbitChemiconAB1987
NeutristemSartrius AG, Göttingen, Germany05-100-1Acell culture medium 
Oct 3/4  mouseBD611202
PBS(-)Nacalai Tesque Inc., Kyoto, Japan14249-24
Rabbit IgG(H+L) AlexaFluo488Thermo ScientificA21206
Rabbit IgG(H+L) AlexaFluo546Thermo ScientificA10040
Recombinant human albumin A0237, Merck, Darmstadt, GermanyA9731
Rho kinase inhibitor, Y-27632 Sellec Inc., Tokyo, Japan129830-38-2
RIKEN 2FRKEN Bioresource Research CenterHPS0014undifferentiated hiPSCs 
RPMI 1640 Thermo Fisher Scientific #1187512633020
SB431542Thermo Fisher Scientific301836-41-9
Sodium L-ascorbateMerckA4034-100G
SSEA-4  mouseMilliporeMAB4304
StemFit AK02N Ajinomoto, Tokyo, JapanAK02cell culture medium 
TnT rabbitAbcamab92546
TRA 1-81 mouseMilliporeMAB4381
TriiodothyronineThermo Fisher ScientificH34068.06
TripLETM express enzyme Thermo Fisher Scientific, Waltham, MA, United States12604013
Trypan blue solution Nacalai Tesque, Kyoto, Japan20577-34
Tryptose phosphate brothMerckT8782-500G
Wnt-C59 Bio-techne, NB, United Kingdom5148
β figure-materials-7925 Tublin  mousePromegaG712A

References

  1. Okita, K., et al. A more efficient method to generate integration-free human iPS cells. Nature Methods. 8 (5), 409-412 (2011).
  2. Tanaka, T., et al. In vitro pharmacologic testing using human....

Explore More Articles

Automated Culture SystemHuman induced Pluripotent Stem CellsIPS CellsReproducibilityVariability ReductionAffordable EquipmentDifferentiation InductionAI based Image JudgmentShared ProtocolsGlobal Research Collaboration

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved