Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Il protocollo descritto in questo documento utilizza la tecnica dell'istogramma del gradiente direzionale per estrarre le caratteristiche di campioni di immagini concrete in vari stati di vibrazione. Impiega una macchina vettoriale di supporto per l'apprendimento automatico, risultando in un metodo di riconoscimento delle immagini con requisiti minimi di campioni di addestramento e basse esigenze di prestazioni del computer.

Abstract

In questo articolo, la tecnologia dell'istogramma a gradiente direzionale viene impiegata per estrarre le caratteristiche di campioni di immagini concrete catturate in diversi stati di vibrazione. La macchina a vettori di supporto (SVM) viene utilizzata per apprendere la relazione tra le caratteristiche dell'immagine e lo stato di vibrazione. I risultati dell'apprendimento automatico vengono successivamente utilizzati per valutare la fattibilità dello stato di vibrazione del calcestruzzo. Contemporaneamente, viene analizzato il meccanismo di influenza dei parametri di calcolo dell'istogramma del gradiente direzionale sull'accuratezza del riconoscimento. I risultati dimostrano la fattibilità dell'utilizzo della tecnologia dell'istogramma del gradiente direzionale-SVM per identificare lo stato di vibrazione del calcestruzzo. L'accuratezza del riconoscimento inizialmente aumenta e poi diminuisce all'aumentare della dimensione del blocco del gradiente direzionale o del numero di intervalli statistici. Anche l'accuratezza del riconoscimento diminuisce linearmente con l'aumentare della soglia di binarizzazione. Utilizzando immagini campione con una risoluzione di 1024 pixel x 1024 pixel e ottimizzando i parametri di estrazione delle feature, è possibile ottenere una precisione di riconoscimento del 100%.

Introduction

Il calcestruzzo è un materiale da costruzione fondamentale ampiamente utilizzato nel settore delle costruzioni. Durante il pompaggio, il calcestruzzo sviluppa spesso vuoti che richiedono la compattazione attraverso le vibrazioni. Vibrazioni inadeguate possono provocare una superficie in calcestruzzo a nido d'ape, mentre vibrazioni eccessive possono portare alla segregazione del calcestruzzo 1,2. La qualità del funzionamento a vibrazione influisce in modo significativo sulla resistenza 3,4,5,6 e sulla durata delle strutture in calcestruzzo

Protocol

1. Acquisizione di immagini di campioni concreti

  1. Trasportare il calcestruzzo sul posto di lavoro, dove verrà versato dall'autopompa.
  2. Per acquisire immagini, accendere l'apparecchiatura di ripresa spostando l'interruttore del tasto di accensione verso destra e ruotandolo in posizione ON . Regolare la manopola della modalità della fotocamera sulla modalità automatica verde, assicurandosi che l'obiettivo della fotocamera sia parallelo alla superficie in cemento, quind.......

Representative Results

Questo protocollo ha lo scopo di analizzare come i parametri di calcolo a tre vettori della caratteristica del gradiente direzionale influenzino l'accuratezza della SVM nell'identificazione dello stato di vibrazione del calcestruzzo. I parametri di calcolo principali del vettore di feature del gradiente direzionale includono la dimensione del blocco statistico del gradiente direzionale, il numero di intervalli angolari statistici del gradiente direzionale e la soglia di grigio binario. In questa sezione vengono utilizzat.......

Discussion

Questo documento utilizza la macchina a vettori di supporto (SVM) per apprendere le caratteristiche dell'immagine di vari campioni di stato di vibrazione del calcestruzzo. Sulla base dei risultati dell'apprendimento automatico, viene proposto un metodo concreto di riconoscimento dello stato di vibrazione basato sul riconoscimento delle immagini. Per migliorare l'accuratezza del riconoscimento, è fondamentale controllare i parametri dei tre passaggi chiave: segmentazione dell'immagine, binarizzazione dell'immagine ed est.......

Disclosures

Gli autori non hanno nulla da rivelare.

Acknowledgements

Ringraziamo con gratitudine il progetto di ricerca scientifica annuale (NO.7) del Wuhan Urban Construction Group 2023 per aver finanziato questo lavoro.

....

Materials

NameCompanyCatalog NumberComments
cameraSONYA6000The sensor size is 23.5x15.6mm, the maximum acquisition resolution is 1440 * 1080, and the effective pixel is 24.3 million.
concreteWuhan Construction Changxin Technology Development Co., Ltd.C30 pumping concreteAccording to the standard of ' concrete strength test and evaluation standard ' ( GB / T 50107-2010 ), the standard value of cubic compressive strength is 30 MPa pumping concrete.
MatlabMathWorksMatlab R2017aMATLAB's programming interface provides development tools for improving code quality maintainability and maximizing performance.
It provides tools for building applications using custom graphical interfaces.
It provides tools for combining MATLAB-based algorithms with external applications and languages
Processor Intel12th Gen Intel(R) Core (TM) i7-12700H @ 2.30GHz64-bit Win11 processor 

References

  1. Jiang, L., Tian, Z., Wang, K., Sun, X. Estimating the segregation of concrete under vibration based on electrical method. Concrete. 1, 41-44 (2023).
  2. Ren, B., Ye, Z., Wang, D., Wu, B., Tan, Y.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

IngegneriaNumero 203

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved