JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biochemistry

Isolamento Químico por Afinidade de Vesículas Extracelulares de Biofluidos para Análise Proteômica e Fosfoproteômica

Published: October 27th, 2023

DOI:

10.3791/65844

1Department of Biochemistry, Purdue University, 2Tymora Analytical Operations, 3Department of Chemistry, Purdue University, 4Purdue Institute for Cancer Research, Purdue University

O presente protocolo fornece descrições detalhadas para o isolamento eficiente de vesículas extracelulares urinárias utilizando esferas magnéticas funcionalizadas. Além disso, engloba análises subsequentes, incluindo western blotting, proteômica e fosfoproteômica.

Vesículas extracelulares (EVs) de biofluidos têm recentemente ganhado atenção significativa no campo da biópsia líquida. Liberados por quase todos os tipos de células, eles fornecem um instantâneo em tempo real das células hospedeiras e contêm uma riqueza de informações moleculares, incluindo proteínas, em particular aquelas com modificações pós-traducionais (PTMs), como a fosforilação, como o principal ator das funções celulares e do início e progressão da doença. No entanto, o isolamento de EVs de biofluidos permanece desafiador devido aos baixos rendimentos e impurezas dos métodos atuais de isolamento de EV, dificultando a análise a jusante de cargas de EV, como fosfoproteínas de EV. Aqui, descrevemos um método rápido e eficaz de isolamento de EV baseado em esferas magnéticas funcionalizadas para isolamento de EV de biofluidos como urina humana e análise proteômica a jusante e fosfoproteômica após isolamento de EV. O protocolo possibilitou um alto rendimento de recuperação de EVs urinários e perfis sensíveis de proteoma EV e fosfoproteoma. Além disso, a versatilidade deste protocolo e considerações técnicas relevantes também são abordadas aqui.

As vesículas extracelulares (EVs) são nanopartículas encapsuladas em membrana secretadas por todos os tipos de células e estão presentes em biofluidos como sangue, urina, saliva, etc.1,2,3,4. Os EVs carregam uma carga de diversas moléculas bioativas que refletem o estado fisiológico e patológico de suas células hospedeiras e, portanto, funcionam como fatores cruciais na progressão da doença 4,5,6. Além disso, extensos estudos estabeleceram que marca....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Todas as amostras de urina foram coletadas de indivíduos saudáveis após consentimento informado. Os experimentos estavam em conformidade com todos os padrões éticos envolvendo amostras humanas e em conformidade com as diretrizes do Programa de Proteção à Pesquisa em Seres Humanos da Universidade de Purdue.

1. Coleta de amostras

  1. Centrifugar 12 mL de amostra de urina em um tubo de centrífuga cônica de 15 mL por 10 min a 2.500 x g, 4 °C para remover .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Este protocolo demonstra um fluxo de trabalho abrangente desde o isolamento de EVs até análises proteômicas e fosfoproteômicas a jusante (Figura 1). As amostras de urina em triplicata foram submetidas ao isolamento EV. Os EVs isolados foram caracterizados por western blotting e subsequentemente processados para preparação de amostras proteômicas baseadas em espectrometria de massa, incluindo extração de proteínas, digestão enzimática e limpeza de peptídeos. Para a análise fosfo.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

O isolamento eficaz de EV é um pré-requisito essencial para detectar proteínas e fosfoproteínas pouco abundantes em EVs. Apesar do desenvolvimento de inúmeros métodos para suprir essa necessidade, a maioria ainda sofre de limitações como má recuperação ou baixa reprodutibilidade, que impedem sua utilização em estudos em larga escala e cenários clínicos de rotina. O DUC é geralmente considerado o método mais comum para o isolamento de EV, e as etapas adicionais de lavagem são normalmente aplicadas para a.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Este trabalho foi financiado em parte pelos subsídios do NIH 3RF1AG064250 e R44CA239845.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1.5 mL microcentrifuge tubeLife Science ProductsM-1700C-LB
1.5 mL tube magnetic separator rackSergi Lab Supplies1005
15 mL conical centrifuge tubeCorning 352097
15 mL tube magnetic separator rackSergi Lab Supplies1002
Anti-rabbit IgG, HRP-linked AntibodyCell Signaling Technology7074P2
Benchtop incubated shakerBioerDIS-87999-3367802Bioer Thermocell Mixing Block MB-101
CD9 (D3H4P) Rabbit mAbCell Signaling Technology13403S
ChloroacetamideSigma -AldrichC0267-100GUsed for alkylation of reduced sulfide groups. Freshly prepare 400 mM in water as stock solution.
Ethyl acetate Fisher Scientific E145-4Precipitates detergents
Evosep One EvosepLiquid chromatography system
EvotipsEvosepEV2013Sample loading for Evosep One system 
EVtrapTymora AnalyticalFunctionalized magnetic beads, loading buffer, and washing buffer 
Immobilon-FL PVDF MembraneSigma -AldrichIPFL00010Blotting membrane 
NuPAGE 4-12% Bis-Tris GelInvitrogenNP0322BOXInvitrogen NuPAGE 4 to 12%, Bis-Tris, 1.0 mm, Mini Protein Gel, 12-well
NuPAGE LDS Sample Buffer (4X)InvitrogenNP0007
PBSThermoFisher10010023
Pepsep C18 15 x 75 x 1.9Bruker 1893473Separation column 
Phosphatase Inhibitor Cocktail 2Sigma -AldrichP5726-5ML100X, Phosphotase inhibitor.
Phosphatase Inhibitor Cocktail 3Sigma -AldrichP0044-1ML100X,  Phosphotase inhibitor. 
Pierce BCA Protein Assay KitThermoFisher23225
Pierce ECL Western Blotting SubstrateThermoFisher32106HRP substrate 
PolyMAC phosphopeptide enrichment kitTymora AnalyticalPolymer-based metal ion affinity capture (PolyMAC) for phosphopeptide enrichment
Sodium deoxycholate Sigma -AldrichD6750-10GDetergent for lysis buffer. Prepare 120 mM in water as stock solution.
Sodium lauroyl sarcosinate Sigma -AldrichL9150-50GDetergent for lysis buffer. Prepare 120 mM in water as stock solution.
timsTOF HTBrukerTrapped ion-mobility time-of-flight mass spectrometry
TopTip C-18 (10-200 μL) tips GlygenTT2C18.96Desalting method
TriethylamineSigma -Aldrich471283-100MLFor EV elution. 
Triethylammonium bicabonate bufferSigma -AldrichT7408-100ML1 M
Trifluoroacetic acidSigma -Aldrich302031-100ML
Tris-(2-carboxyethyl)phosphine hydrochlorideSigma -AldrichC4706Used for reducion of disulfide bonds. Prepare 200 mM in water as stock solution. Aliquot the stock solution into small volume and store it in at-20°C (avoid multiple freeze-thaw cycles).
Trypsin/Lys-C MIXThermoFisherPIA41007

  1. Abels, E. R., Breakefield, X. O. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 36 (3), 301-312 (2016).
  2. Maacha, S., et al. Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer. 18 (1), 55 (2019).
  3. van Niel, G., D’Angelo, G., Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19 (4), 213-228 (2018).
  4. Becker, A., et al. extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. 30 (6), 836-848 (2016).
  5. Bebelman, M. P., Smit, M. J., Pegtel, D. M., Baglio, S. R. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 188, 1-11 (2018).
  6. Urabe, F., et al. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am J Physiol Cell Physiol. 318 (1), C29-C39 (2020).
  7. Chang, W. H., Cerione, R. A., Antonyak, M. A. Extracellular Vesicles and Their Roles in Cancer Progression. Methods Mol Biol. 2174, 143-170 (2021).
  8. Chen, I. H., et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci U S A. 114 (12), 3175-3180 (2017).
  9. Harsha, H. C., Pandey, A. Phosphoproteomics in cancer. Mol Oncol. 4 (6), 482-495 (2010).
  10. Singh, V., et al. Phosphorylation: Implications in Cancer. Protein J. 36 (1), 1-6 (2017).
  11. Delom, F., Chevet, E. Phosphoprotein analysis: from proteins to proteomes. Proteome Sci. 4, 15 (2006).
  12. Thingholm, T. E., Jensen, O. N., Larsen, M. R. Analytical strategies for phosphoproteomics. Proteomics. 9 (6), 1451-1468 (2009).
  13. Taylor, D. D., Shah, S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 87, 3-10 (2015).
  14. Witwer, K. W., et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2, (2013).
  15. Zeringer, E., et al. Methods for the extraction and RNA profiling of exosomes. World J Methodol. 3 (1), 11-18 (2013).
  16. Mathivanan, S., et al. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics. 9 (2), 197-208 (2010).
  17. Enderle, D., et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS ONE. 10 (8), e0136133 (2015).
  18. Wu, X., Li, L., Iliuk, A., Tao, W. A. Highly Efficient Phosphoproteome Capture and Analysis from Urinary Extracellular Vesicles. J Proteome Res. 17 (9), 3308-3316 (2018).
  19. Iliuk, A., et al. Plasma-derived extracellular vesicle phosphoproteomics through chemical affinity purification. J Proteome Res. 19 (7), 2563-2574 (2020).
  20. Iliuk, A. B., Martin, V. A., Alicie, B. M., Geahlen, R. L., Tao, W. A. In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics. 9 (10), 2162-2172 (2010).
  21. Hadisurya, M., et al. Quantitative proteomics and phosphoproteomics of urinary extracellular vesicles define diagnostic and prognostic biosignatures for Parkinson’s Disease. Commun Med. 3 (1), 64 (2023).
  22. Hadisurya, M., et al. Data-independent acquisition phosphoproteomics of urinary extracellular vesicles enables renal cell carcinoma grade differentiation. Mol Cell Proteomics. 22 (5), 100536 (2023).
  23. Wu, X., Liu, Y. K., Iliuk, A. B., Tao, W. A. Mass spectrometry-based phosphoproteomics in clinical applications. Trends Analyt Chem. 163, 117066 (2023).
  24. Mathieu, M., et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat Commun. 12 (1), 4389 (2021).
  25. Mahmood, T., Yang, P. C. Western blot: technique, theory, and trouble shooting. N Am J Med Sci. 4 (9), 429-434 (2012).
  26. Keerthikumar, S., et al. ExoCarta: A web-based compendium of exosomal cargo. J Mol Biol. 428 (4), 688-692 (2016).
  27. Théry, C., Amigorena, S., Raposo, G., Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 3 (22), (2006).
  28. Livshits, M. A., et al. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci Rep. 5, 17319 (2015).
  29. Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V., Laktionov, P. P. Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int. 2018, (2018).
  30. Webber, J., Clayton, A. How pure are your vesicles. J Extracell Vesicles. 2, (2013).
  31. Erdjument-Bromage, H., Huang, F. K., Neubert, T. A. Sample preparation for relative quantitation of proteins using tandem mass tags (TMT) and mass spectrometry (MS). Methods Mol Biol. 1741, 135-149 (2018).
  32. Charles Jacob, H. K., et al. Identification of novel early pancreatic cancer biomarkers KIF5B and SFRP2 from “first contact” interactions in the tumor microenvironment. J Exp Clinl Cancer Res. 41 (1), 258 (2022).
  33. Nunez Lopez, Y. O., et al. Extracellular vesicle proteomics and phosphoproteomics identify pathways for increased risk in patients hospitalized with COVID-19 and type 2 diabetes mellitus. Diabetes Res Clin Pract. 197, 110565 (2023).
  34. Hinzman, C. P., et al. A multi-omics approach identifies pancreatic cancer cell extracellular vesicles as mediators of the unfolded protein response in normal pancreatic epithelial cells. J Extracell Vesicles. 11 (6), e12232 (2022).
  35. Kornilov, R., et al. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 7 (1), 1422674 (2018).
  36. Willms, E., et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 6, 22519 (2016).
  37. Searle, B. C., et al. Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Nat Commun. 11 (1), 1548 (2020).
  38. Skowronek, P., et al. Rapid and in-depth coverage of the (Phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol Cell Proteomics. 21 (9), 100279 (2022).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved