A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
We describe a detailed protocol for the preparation of post-cryopreserved hESC-derived photoreceptor progenitor cells and the sub-retinal delivery of these cells in rd10 mice.
Regeneration of photoreceptor cells using human pluripotent stem cells is a promising therapy for the treatment of both hereditary and aging retinal diseases at advanced stages. We have shown human recombinant retina-specific laminin isoform matrix is able to support the differentiation of human embryonic stem cells (hESCs) to photoreceptor progenitors. In addition, sub-retinal injection of these cells has also shown partial restoration in the rd10 rodent and rabbit models. Sub-retinal injection is known to be an established method that has been used to deliver pharmaceutical compounds to the photoreceptor cells and retinal pigmented epithelial (RPE) layer of the eye due to its proximity to the target space. It has also been used to deliver adeno-associated viral vectors into the sub-retinal space to treat retinal diseases. The sub-retinal delivery of pharmaceutical compounds and cells in the murine model is challenging due to the constraint in the size of the murine eyeball. This protocol describes the detailed procedure for the preparation of hESC-derived photoreceptor progenitor cells for injection and the sub-retinal delivery technique of these cells in genetic retinitis pigmentosa mutant, rd10 mice. This approach allows cell therapy to the targeted area, in particular the outer nuclear layer of the retina, where diseases leading to photoreceptor degeneration occur.
Inherited retinal diseases and age-related macular degeneration lead to photoreceptor cell loss and eventual blindness. The retinal photoreceptor is the outer segment layer of the retina comprised of specialized cells responsible for phototransduction (i.e., conversion of light to neuronal signals). The rod and cone photoreceptor cells are adjacent to the retinal pigmented layer (RPE)1. Photoreceptor cell replacement therapy to compensate the cell loss has been an emerging and developing therapeutic approach. Embryonic stem cells (ESCs)2,3,4, induced p....
The in vivo experiments were done in accordance with the guidelines and protocol approved by the Institutional Animal Care and Use Committee of SingHealth (IACUC) and the Association for Research in Vision and Ophthalmology (ARVO) Statement for the use of animals in Ophthalmic and Vision Research. The pups were immunosuppressed from P17 (pre-transplantation) to P30 (post-transplantation) by feeding them drinking water containing cyclosporine (260 g/L).
1. Preparation of Day 32 h.......
The 10 µL glass syringe was assembled according to the manufacturer's instructions (Figure 1), and the blunt needle used to deliver the cell suspension/media is shown in Figure 1B. Different approaches for sub-retinal injection are illustrated in Figure 2. We describe the pars plana approach in this protocol (Figure 2C). The blunt needle mounted on a glass syringe was inserted through a sclerot.......
The sub-retinal injection has been used for cell suspension transplantation to treat RPE and retinal diseases23,25,26,27,28,31,40. This approach is highly essential in rodent studies not only for cell transplantation and gene therapy approaches but also to evaluate novel therapeutic compound.......
We thank Wei Sheng Tan, Luanne Chiang Xue Yen, Xinyi Lee, and Yingying Chung for providing technical assistance for the preparation of the day 32 hESC-derived photoreceptor progenitors after cryopreservation. This work was supported in part by grants from the National Medical Research Council Young Investigator Research Grant Award (NMRC/OFYIRG/0042/2017) and National Research Foundation 24th Competitive Research Program Grant (CRP24-2020-0083) to H.G.T.
....Name | Company | Catalog Number | Comments |
0.3% Tobramycin | Novartis | NDC 0078-0813-01 | Tobrex (3.5 g) |
0.3% Tobramycin and 0.1% Dexamethasone | Novartis | NDC 0078-0876-01 | Tobradex (3.5 g) |
0.5% Proparacaine hydrochloride | Alcon | NDC 0998-0016-15 | 0.5% Alcaine (15 mL) |
1 mL Tuberculin syringe | Turemo | SS01T2713 | |
1% Tropicamide | Alcon | NDC 0998-0355-15 | 1% Mydriacyl (15 mL) |
2.5% Phenylephrine hydrochloride | Alcon | NDC 0998-0342-05 | 2.5% Mydfrin (5 mL) |
24-well tissue culture plate | Costar | 3526 | |
30 G Disposable needle | Becton Dickinson (BD) | 305128 | |
33 G, 20 mm length blunt needles | Hamilton | 7803-05 | |
Automated Cell Counter | NanoEnTek | Model: Eve | |
B27 without Vitamin A | Life Technologies | 12587001 | 2%36 |
Buprenorphine | Ceva | Vetergesic vet (0.3 mg/mL) | |
CKI-7 | Sigma | C0742 | 5 µM36 |
Cyclosporine | Novartis | 260 g/L in drinking water | |
Day 32 hESC-derived photoreceptor progenitor cells | DUKE-NUS Medical School | Human embryonic stem cells are differentiated for 32 days. See protocol in Ref 36. | |
Gauze | Winner Industries Co. Ltd. | 1SNW475-4 | |
Glasgow Minimum Essential Medium | Gibco | 11710–035 | |
hESC cell line H1 | WiCell Research Institute | WA01 | |
Human brain-derived neurotrophic factor (BDNF) | Peprotech | 450-02-50 | 10 ng/mL36 |
Human ciliary neurotrophic factor (CNTF) | Prospec-Tany Technogene | CYT-272 | 10 ng/mL36 |
Ketamine hydrochloride (100 mg/mL) | Ceva Santé Animale | KETALAB03 | |
LN-521 | Biolamina | LN521-02 | 1 µg36 |
mFreSR | STEMCELL Technologies | 5854 | |
Microlitre glass syringe (10 mL) | Hamilton | 7653-01 | |
N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) | Selleckchem | S2215 | 10 µM36 |
N-2 supplement | Life Technologies | A13707-01 | 1%36 |
Non-essential amino acids (NEAA) | Gibco | 11140–050 | 1x36 |
NutriStem XF Media | Satorius | 05-100-1A | |
Operating microscope | Zeiss | OPMI LUMERA 700 | With Built-in iOCT function |
PRDM (Photoreceptor differentiation medium, 50ml) | DUKE-NUS Medical School | See media composition36. Basal Medium, 10 µM DAPT, 10 ng/mL BDNF, 10 ng/mL CNTF, 0.5 µM Retinoic acid, 2% B27 and 1% N2. Basal Medium: 1x GMEM, 1 mM sodium pyruvate, 0.1 mM B-mercaptoethanol, 1x Non-essential amino acids (NEAA). | |
Pyruvate | Gibco | 11360–070 | 1 mM36 |
Rd10 mice | Jackson Laboratory | B6.CXB1-Pde6brd10/J mice | Gender: male/female, Age: P20 (injection), Weight: 3-6 g |
Retinoic acid | Tocris Bioscience | 0695/50 | 0.5 µM36 |
Round Cover Slip (12 mm) | Fisher Scientific | 12-545-80 | |
SB431542 | Sigma | S4317 | 0.5 µM36 |
Vidisic Gel (10 g) | Dr. Gerhard Mann | ||
Xylazine hydrochloride (20 mg/mL) | Troy Laboratories | LI0605 | |
β-mercaptoethanol | Life Technologies | 21985–023 | 0.1 mM36 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved