A subscription to JoVE is required to view this content. Sign in or start your free trial.
Этот протокол описывает простой процесс, в котором используются удобные пластиковые микроформы для простых операций микротиснения для изготовления микроканалов на нанофибриллированной целлюлозной бумаге с минимальной шириной 200 мкм.
Нанобумага, полученная из нанофибриллированной целлюлозы, вызвала значительный интерес в качестве перспективного материала для микрофлюидных применений. Его привлекательность заключается в ряде превосходных качеств, включая исключительно гладкую поверхность, выдающуюся оптическую прозрачность, однородную матрицу из нановолокна с наноразмерной пористостью и настраиваемые химические свойства. Несмотря на быстрый рост микрофлюидики на основе нанобумаги, современные методы, используемые для создания микроканалов на нанобумаге, такие как 3D-печать, нанесение покрытий распылением или ручная резка и сборка, которые имеют решающее значение для практического применения, по-прежнему имеют определенные ограничения, в частности, восприимчивость к загрязнению. Кроме того, эти методы ограничены производством каналов миллиметрового размера. В этом исследовании представлен простой процесс, в котором используются удобные пластиковые микроформы для простых операций микротиснения для изготовления микроканалов на нанобумаге, достигая минимальной ширины 200 мкм. Разработанный микроканал превосходит существующие подходы, достигая четырехкратного улучшения, и может быть изготовлен в течение 45 минут. Кроме того, были оптимизированы параметры изготовления, а для разработчиков приложений предусмотрена удобная справочная таблица. Было продемонстрировано доказательство концепции ламинарного смесителя, генератора капель и функциональных аналитических устройств на основе нанобумаги (NanoPAD), предназначенных для зондирования родамина B с использованием спектроскопии комбинационного рассеяния света с поверхностным усилением. Примечательно, что нанопланшеты продемонстрировали исключительную производительность с улучшенными пределами обнаружения. Эти выдающиеся результаты можно объяснить превосходными оптическими свойствами нанобумаги и недавно разработанным точным методом микротиснения, позволяющим интегрировать и тонко настраивать нанопланшеты.
В последнее время бумага (нанобумага) из нанофибриллированной целлюлозы (NFC) стала очень перспективным материалом-подложкой для различных применений, таких как гибкая электроника, энергетические устройства и биомедицина 1,2,3,4. Нанобумага, полученная из натуральных растений, является экономичной, биосовместимой и биоразлагаемой, что делает ее привлекательной альтернативой традиционной целлюлозной бумаге 5,6. К его исключительным свойствам относятся сверхгладкая поверхность с шерохо....
1. Процесс микротиснения для микроканального рисунка на нанобумаге
Был разработан уникальный метод создания микроканальных узоров на нанобумаге с использованием практичных пластиковых микроформ с помощью удобной техники микротиснения. Примечательно, что этот метод позволяет создавать микроканальные узоры в масштабе до 200 мкм, что представляет собо.......
Основное внимание в данном исследовании уделяется разработке простого метода изготовления микроканалов на нанобумаге. Для решения этой задачи была разработана эффективная технология тиснения с использованием ПТФЭ в качестве пресс-формы12. Оптимизировав температуру и да.......
Авторам нечего раскрывать.
Авторы выражают признательность за финансовую поддержку со стороны программ Фонда естественных наук Высшего образования провинции Цзянсу (22KJB460033) и Программы по науке и технологиям провинции Цзянсу «Молодой ученый» (BK20200251). Эта работа также частично поддерживается Университетским исследовательским центром искусственного интеллекта XJTLU, Инженерно-исследовательским центром науки о данных и когнитивных вычислений провинции Цзянсу при XJTLU и инновационной платформой SIP AI (YZCXPT2022103). Также выражается признательность за поддержку со стороны Государственной ключевой лаборатории инженерии производственных систем в рамках открытого проекта (SKLMS2023019) и ....
Name | Company | Catalog Number | Comments |
AgNO3 | Hushi (Shanghai, China) | 7761-88-8 | >99% |
Ethanol | Hushi (Shanghai, China) | 64-17-5 | >99% |
Hexadecane | Macklin (Shanghai, China) | 544-76-3 | >99% |
LabSpec software | Horiba (Japan) | LabSpec5 | |
Melamine | Macklin (Shanghai, China) | 108-78-1 | >99% |
NaBH4 | Aladdin (Shanghai, China) | 16940-66-2 | >99% |
Origin lab software | OriginLab (USA) | ||
Polyethylene terephthalate (PET) | Myers Industries (Akron, USA) | ||
Polytetrafluoroethylene films | Shenzhen Huashenglong plastic material Co., Ltd. (Shenzhen, China) | Teflon film | |
PVDF filter membrane | EMD Millipore Corporation (USA) | VVLP04700 | pore size: 0.1 μm |
Raman spectrometer | Horiba (Japan) | Xplo RA | |
Rhodamine B | Macklin (Shanghai, China) | 81-88-9 | >95% |
Scanning electron microscopy (SEM) | FEI(USA) | Scios 2 HiVac | |
Silicon wafer | Horiba (Japan) | diameter: 5 mm | |
TEMPO-oxidized NFC slurry | Tianjin University of Science and Technology | 1.0 wt% solid, carboxylate level 2.0 mmol/g solid, average nanofiber diameter: 10 nm |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved