* These authors contributed equally
En langsigtet konserveringsmetode for Drosophila-stammer som et alternativ til hyppig overførsel af voksne fluer til hætteglas med friske fødevarer er meget ønskelig. Denne protokol beskriver kryopræservering af Drosophila primordiale kimceller og stamme genoplivning via deres transplantation til agametiske værtsembryoner.
Drosophila-stammer skal opretholdes ved hyppig overførsel af voksne fluer til nye hætteglas. Dette medfører en fare for mutationsforringelse og fænotypiske ændringer. Det er derfor bydende nødvendigt at udvikle en alternativ metode til langtidsbevaring uden sådanne ændringer. På trods af tidligere vellykkede forsøg er kryopræservering af Drosophila-embryoner stadig ikke til praktisk brug på grund af lav reproducerbarhed. Her beskriver vi en protokol for kryopræservering af primordiale kimceller (PGC) og genoplivning af stammer via transplantation af kryopræserverede PGC'er til agametiske Drosophila melanogaster (D. melanogaster) værtsembryoner. PGC'er er meget gennemtrængelige for kryoprotektive midler (CPA'er), og udviklingsmæssig og morfologisk variation blandt stammer er mindre problematisk end ved embryokryopræservering. I denne metode opsamles PGC'er fra ca. 30 donorembryoner, lægges i en nål efter CPA-behandling og kryopræserveres derefter i flydende nitrogen. For at producere donorafledte kønsceller optøs de kryopræserverede PGC'er i en nål og deponeres derefter i ca. 15 agametiske værtsembryoner. En frekvens på mindst 15% frugtbare fluer blev opnået med denne protokol, og antallet af afkom pr. frugtbart par var altid mere end nok til at genoplive den oprindelige stamme (det gennemsnitlige afkomstal var 77,2 ± 7,1), hvilket indikerer kryopræserverede PGC'ers evne til at blive kimlinjestamceller. Det gennemsnitlige antal fertile fluer pr. nål var 1,1 ± 0,2, og 9 ud af 26 nåle producerede to eller flere frugtbare afkom. Det blev konstateret, at 11 nåle er nok til at producere 6 eller flere afkom, hvor mindst en hun og en mand sandsynligvis er inkluderet. Den agametiske vært gør det muligt at genoplive stammen hurtigt ved blot at krydse nyopståede kvindelige og mandlige fluer. Derudover har PGC'er potentiale til at blive brugt i genteknologiske applikationer, såsom genomredigering.
Vedligeholdelsen af Drosophila-stammer ved overførsel af voksne fluer til nye hætteglas resulterer uundgåeligt i akkumulering af mutationer og epigenetiske ændringer over tid. Udvikling af en alternativ metode til langsigtet vedligeholdelse af Drosophila-stammer uden sådanne ændringer er bydende nødvendig, især for referencestammer, hvor hele genomet skal opretholdes. Flere vellykkede forsøg på at kryopræservere Drosophila-embryoner eller æggestokke er blevet beskrevet 1,2,3. Desværre er de stadig ikke til praktisk brug på grund af lav reproducerbarhed. Faktisk har embryoner i tidlige stadier en lav overlevelsesrate efter kryopræservering på grund af deres høje indhold af æggeblommer, hvilket hæmmer gennemtrængning og diffusion af kryoprotektive midler (CPA) 2,3. CPA-permeabiliteten er også stærkt begrænset af de voksagtige lag af embryoner i sene stadier. Det er vanskeligt og tidskrævende at finde en stammespecifik tidsperiode, hvor embryoner har en høj overlevelsesrate og et tyndere vokslag. For nylig forbedrede Zhan et al.4 metoder til embryopermeabilisering, CPA-belastning og vitrifikation og med succes kryopræserverede embryoner af flere stammer. Metoderne er imidlertid ikke lette at anvende, fordi embryonernes levedygtighed efter permeabilisering har tendens til at være dårlig. Der er derfor stadig behov for yderligere forbedring og udvikling af alternative tilgange. Metoder, der involverer kryopræservering af primordiale kimceller (PGC'er), er en alternativ tilgang til langsigtet vedligeholdelse af Drosophila-stammer.
PGC (også kaldet polcelle) transplantation er blevet brugt til at generere kimlinjekimærer, især kvinder, til at studere processer som moderens virkninger af zygotiske dødelige mutationer og kønsbestemmelse af kimceller 5,6,7,8,9,10,11,12 . PGC'er er meget mindre end embryoner og vil sandsynligvis være meget gennemtrængelige for de fleste kryoprotektorer. Desuden er udviklingsmæssig og morfologisk variation blandt stammer mindre problematisk, og en agametisk vært muliggør hurtig gendannelse af hele genomer. Vi har for nylig udviklet en ny metode til PGC kryopræservering13, som forhindrer de ellers uundgåelige genetiske og epigenetiske ændringer i Drosophila-stammer. Her præsenterer vi den detaljerede protokol.
Denne kryopræserveringsmetode kræver særlig ekspertise inden for PGC-håndtering og instrumentering. Mens en trinvis tilgang kan være en effektiv løsning for dem, der ikke er bekendt med det, kan det være uegnet til små laboratorier på grund af instrumenteringskrav. Denne PGC-kryopræserveringsprotokol kan lettere tilpasses til brug med forskellige Drosophila-arter og forskellige insektarter end embryokryopræserveringsprotokoller på grund af mindre udviklingsmæssige og morfologiske forskelle. PGC'er kan også potentielt bruges i genteknologiske applikationer, såsom genomredigering 14,15,16. Sammenfattende kan denne metode bruges i lagercentre og andre laboratorier til at opretholde flue og andre insektstammer i længere perioder uden ændringer.
1. Forberedelse af udstyr
2. Indsamling og kryopræservering af PGC'er
3. Optøning og transplantation af PGC'er
4. Inkubation af embryoner og genopretning af donorstammer
Effektiviteten af kryopræserveret PGC-transplantation er rapporteret af Asaoka et al.13 og er angivet i tabel 2 for transplantation af PGC'er, der er kryopræserveret i 1 dag eller længere i flydende nitrogen. Udklækningsraten var 168/208 transplanterede embryoner (80,8%), og embryo-til-voksen levedygtighed var 87/208 (41,8%). Hyppigheden af frugtbare fluer var 28/87 (32,2%). Denne frekvens varierede ikke mellem PGC'er kryopræserveret i 8 til 30 dage og for dem, der blev kryopræserveret i 31-150 dage (20/57 vs. 8/30, G' = 0,63, p >0,1, d.f. = 1). Det gennemsnitlige antal afkom pr. par var 77,2 ± 7,1 (n = 18, 28-122), hvilket indikerer kryopræserverede PGC'ers evne til at blive kimlinjestamceller. Af de 26 nåle producerede 10 intet frugtbart afkom, 7 nåle producerede 1 frugtbart afkom, 7 nåle producerede 2 frugtbart afkom og 2 nåle producerede 3 eller 4 frugtbare afkom. Det gennemsnitlige antal frugtbare fluer pr. nål var 1,1 ± 0,2. Baseret på disse data, med 95% tillid, er 11 nåle nok til at producere 6 eller flere afkom, hvor mindst en hun og en mand sandsynligvis er inkluderet.
I ovenstående eksperimenter brugte vi embryoner, der udtrykte ovo-A mRNA i PGC'er (nanos>ovo-A, OvoA_OE embryoner) som en agametisk vært. Ud af 669 F1-kvinder og 720 F1-mænd produceret af transplanterede nanos>ovo-A-par var der ingen flugter, der stammede fra værts-PGC'erne. Flere oskar (osk) mutanter er også temperaturfølsomme agametiske20,21. Fordi en osk-mutant med høj homozygot levedygtighed og den agametiske fænotype ikke længere er tilgængelig, genskabte vi osk[8] missensemutant20 ved CRISPR/Cas9-assisteret genomredigering. Disse fluer var helt agametiske (0 undslupne ud af 230 hunner og 192 hanner) ved 25 °C, men nogle få undslupne fluer dukkede op ved 23 °C (1 ud af 248 hunner og 1 ud af 290 hanner). nanos>ovo-A anbefales således som agametiske værtsembryoner. Både UASp-ovo-A og nanos-Gal4 aktier13 vil snart være tilgængelige fra KYOTO Drosophila Stock Center.
Figur 1: Nødvendigt udstyr. (A) Et mikromanipulatorsystem til indsamling og transplantation af celler. i) omvendt mikroskop, ii) mekanisk mikromanipulator, iii) sprøjte, iv) kapillærholder, v) trevejs stophane, vi) luftfugter og vii) stereomikroskop. (B) En sprøjte. C) En trevejs stophane og silikonerør forbinder en sprøjte og en kapillærholder. D) En nål og en kapillærholder er fastgjort til en mikromanipulator. E) Et embryonopsamlingsbæger med embryonopsamlingsplade (6 cm i diameter, 7,7 cm høj). (F) En netsi af rustfrit stål. G) En beholder, der anvendes som fugtigt kammer med glasglas. For at opretholde fugtighed skal du placere vådt papir på bunden og lukke låget. (H) En kanyleholder med en kanyle til kryopræservering. (I) Et opbevaringsstativ til kryopræservering og en kasse med nåle. Klik her for at se en større version af denne figur.
Figur 2: Et PGC-opsamlingsglasglas og en kryopræserveringsnål. A) Et glasglas fra urkimceller (PGC) belagt med lim. Dechorionerede embryoner er justeret i to rækker og orienteret med deres forreste til højre (den side, der skal manipuleres) og ventral side opad. En embryo-pool-ramme er anbragt, to dråber kryoprotektive midler (CPA) opløsning deponeres, og poolen fyldes med silikoneolie. (B) En nål skal indeholde så lille en mængde æggeblomme og andre forurenende stoffer som muligt. PGC'er er klemt inde mellem to lag silikoneolie, når de kryopræserveres i flydende nitrogen. Klik her for at se en større version af denne figur.
Figur 3: Gør nålen. Tre-trins spidspoleringsmetode til fremstilling af en nål med en passende hulstørrelse og en skarp spids. Klik her for at se en større version af denne figur.
Figur 4: Embryoindsamlingsordning. Efter to forindsamlinger indsamler vi normalt tre eller fire gange om dagen. Klik her for at se en større version af denne figur.
Figur 5: Justering af værtsembryon . Justering af værtsembryoner på et glasglas. Klik her for at se en større version af denne figur.
Figur 6: En oversigt over PGC-kryopræserveringsmetoden. En oversigt over alle de trin, der er fulgt for at udføre kryopræservering af primordiale kimceller (PGC). Klik her for at se en større version af denne figur.
Luftfugtighed i rummet | |||
< 30% | ~ 30% | > 30% | |
Juster værtsembryoner (~20 min) | Brug en luftfugter i 2 - 10 min | Brug en luftfugter intermitterende i 1 min | Brug ikke en luftfugter |
Optø donor PGC'er | Ikke relevant | Ikke relevant | Ikke relevant |
Lufttørre PGC'er | Udelad dette trin | Udelad dette trin | 5 minutter |
Påfør silikoneolie | Ikke relevant | Ikke relevant | Ikke relevant |
Transplantation PGC'er | Ikke relevant | Ikke relevant | Ikke relevant |
Alle disse trin skal finpudses på 50 minutter. |
Tabel 1: Tørring af embryoner under embryojustering og PGC-optøning.
Donorstamme | Kryopræserveringsperiode | Antal transplanterede embryoner (A) | Antal udklækkede larver (B) (lukkbarhed, B/A) | Antal lukkede voksne (C) (æg-til-voksen levedygtighed, C/A) | Antal frugtbare voksne (D) (hyppighed af fertile fluer, D/C) |
M17 | 8 - 30 dage | 134 | 108 (80.6%) | 57 (42.5%) | 20 (35.1%) |
M17 | 31 - 150 dage | 74 | 60 (81.1%) | 30 (40.5%) | 8 (26.7%) |
M17: yw; TM6B, P{Dfd-GMR-nvYFP}4, Sb[1] Tb[1] ca[1]/ Pri[1] |
Tabel 2: Effektiviteten af kryopræserveret PGC-transplantation. Denne tabel er ændret fra13. Alle data er fra agametiske værter.
En kritisk faktor for succes i PGC kryopræservering og genoplivning er at bruge gode embryoner. Unge hunner (f.eks. 3 til 5 dage gamle) bør anvendes til embryoindsamling. Både donor- og værtsembryoner vurderes ved mikroskopisk inspektion, og kun embryoner på blastoderm-stadiet (stadium 5) anvendes12. Til PGC-indsamling justerer vi normalt ca. 40 donorembryoner i en periode på 20 minutter og indsamler PGC'er fra ca. 30 embryoner tidligt i fase 5; Ældre og defekte embryoner anvendes ikke. Efter kryopræservering og optøning skal PGC'er bevare deres form; PGC'er brister i mislykket bevarelse. Værtsembryoner skal også være i fase 5 og have et moderat indre tryk; Embryoner skal langsomt vende tilbage til deres oprindelige form efter blid prodding. Alt for og utilstrækkeligt tørrede embryoner vil ikke udvikle sig normalt efter transplantation. Fordi heteroseksuel transplantation af PGC'er ikke producerer kønsceller i Drosophila 5,10, er transplantation af PGC'er fra flere donorembryoner til værtsembryoner mere tilbøjelige til at give frugtbare voksne. Til dette formål indsamler vi normalt PGC'er fra ca. 30 embryoner pr. Nål.
Som kryoprotektorer prøvede vi ethylenglycol, dimethylsulfoxid og glycerol sammen med saccharose i forskellige koncentrationer. Vi fastslog, at EBR indeholdende 20% ethylenglycol og 1 M saccharose var de bedste13; brugen af forskellige kryoprotektorer kan dog forbedre PGC-bevarelsen22.
Denne kryopræserveringsmetode kræver specialiserede færdigheder i PGC-håndtering, og ca. 6 ugers træning er nødvendig for komfortabelt at indsamle og transplantere PGC'er. For at vurdere og forbedre færdighedsfærdigheder kan dette opdeles i seks træningstrin: 1) justering af embryoner på et glasglas, 2) styring af en manipulator, 3) transplantation af PGC'er fra et embryo til et andet embryo uden kryopræservering, 4) transplantation af PGC'er fra 10 eller flere embryoner til 5 til 10 embryoner, 5) transplantation af PGC'er efter påføring af CPA og 6) transplantation af PGC'er efter fryseoptøning. Hvert trin kan tage 1 uge. De kortsigtede mål på trin 3 er en udklækningsrate på 40%, embryo-til-voksen levedygtighed på 10% -20% og en hyppighed af frugtbare fluer på 20%.
PGC-kryopræservering kræver dyr instrumentering og højt kvalificeret personale. Derfor kan denne metode ikke vedtages af mange laboratorier. Den nuværende PGC-metode har imidlertid flere vigtige aspekter. For det første er PGC'er meget mindre end embryoner og er meget gennemtrængelige for kryoprotektorer. I modsætning hertil er kryoprotektiv permeabilitet stærkt begrænset af de voksagtige lag af Drosophila-embryoner, hvilket er det mest alvorlige problem ved embryokryopræservering. Faktisk har tidligere undersøgelser gjort en stor indsats for at finde et tidsvindue, hvor embryoner har en høj overlevelsesrate og et tyndere vokslag. Den anden beskæftiger sig med udviklingsmæssig og morfologisk variation blandt stammer. PGC'er indsamles fra embryoner i tidlig fase 5 (2 timer og 30 min-3 timer og 20 minutter efter æglægning), mens embryokryopræservering udføres på embryoner i trin 16 (14-22 timer efter æglægning). Fostrene er derfor meget ældre og udviser meget større stammevariation i det optimale tidsvindue for kryopræservering sammenlignet med PGC-kryopræservering. Faktisk varierede hyppigheden af værter, der producerede donorafledt afkom, ikke mellem fem stammer undersøgt af Asaoka et al.13, selvom værterne ikke var agametiske. Desuden har PGC'er potentialet til at blive brugt i genteknologiske applikationer, såsom genomredigering 14,15,16.
Vi takker KYOTO Drosophila Stock Center for fluestammer. Vi takker også fru Wanda Miyata for engelsksproget redigering af manuskriptet og Dr. Jeremy Allen fra Edanz (https://jp.edanz.com/ac) for redigering af et udkast til dette manuskript. Dette arbejde blev støttet af tilskud (JP16km0210072, JP17km0210146, JP18km0210146) fra Japan Agency for Medical Research and Development (AMED) til T.T.-S.-K., tilskud (JP16km0210073, JP17km0210147, JP18km0210145) fra AMED til S.K., et tilskud (JP20km0210172) fra AMED til T.T.-S.-K. og S.K., et tilskud til videnskabelig forskning (C) (JP19K06780) fra Japan Society for the Promotion of Science (JSPS) til T.T.-S.-K. og et tilskud til videnskabelig forskning inden for innovative områder (JP18H05552) fra JSPS til S.K.
Name | Company | Catalog Number | Comments |
Acetic acid | FUJIFILM Wako Pure Chemical Corporation | 017-00256 | For embryo collection |
Agar powder | FUJIFILM Wako Pure Chemical Corporation | 010-08725 | For embryo collection |
Calcium chloride | FUJIFILM Wako Pure Chemical Corporation | 038-24985 | For EBR solution |
Capillary | Sutter Instrument | B100-75-10-PT | BOROSILICATE GLASS; O.D: 1.0mm, I.D: 0.75mm , length: 10cm, 225Pcs |
Capillary holder | Eppendorf | 5196 081.005 | Capillary holder 4; for micromanipulation |
Chromic acid mixture | FUJIFILM Wako Pure Chemical Corporation | 037-05415 | For needle washing |
CPA solution | 1x EBR containing 20% ethylene glycol and 1M sucrose | ||
Double-sided tape | 3M | Scotch w-12 | For glue extracting |
Ephrussi–Beadle Ringer solution (EBR) | 130 mM NaCl, 5 mM KCl, 2 mM CaCl2, and 10 mM Hepes at pH 6.9 | ||
Ethanol (99.5) | FUJIFILM Wako Pure Chemical Corporation | 057-00451 | For embryo collection |
Ethylene glycol | FUJIFILM Wako Pure Chemical Corporation | 054-00983 | For CPA solution |
Falcon 50 mm x 9 mm bacteriological petri dish | Corning Inc. | 351006 | For embryo collection |
Forceps | Vigor | Type5 Titan | For embryo handling |
Grape juice | Asahi Soft Drinks Co., LTD. | Welch's Grape 100 | For embryo collection |
Grape juice agar plate | 50% grape juice, 2% agar, 1% ethanol, 1% acetic acid | ||
Heptane | FUJIFILM Wako Pure Chemical Corporation | 084-08105 | For glue extracting |
Humidifier | APIX INTERNATIONAL CO., LTD. | FSWD2201-WH | For embryo preparation |
Inverted microscope | Leica Microsystems GmbH | Leica DM IL LED | For micromanipulation |
Luer-lock glass syringe | Tokyo Garasu Kikai Co., Ltd. | 0550 14 71 08 | Coat a plunger with silicon oil (FL-100-450CS);for micromanipulation |
Mechanical micromanipulator | Leica Microsystems GmbH | For micromanipulation | |
Micro slide glass | Matsunami Glass Ind., Ltd. | S-2441 | For embryo aligning |
Microgrinder | NARISHIGE Group | Custom order | EG-401-S combined EG-401 and MF2 (with ocular lens MF2-LE15 ); for needle preparation |
Microscope camera | Leica Microsystems GmbH | Leica MC170 HD | For micromanipulation |
Needle holder | Merck KGaA | Eppendorf TransferTip (ES) | For cryopreservation |
Potassium chloride | Nacalai Tesque, Inc. | 28514-75 | For EBR solution |
Puller | NARISHIGE Group | PN-31 | For needle preparation; the heater level is set to 85.0-98.4, the magnet main level to 57.8, and the magnet sub level to 45.0. |
PVC adhesive tape for electric insulation | Nitto Denko Corporation | J2515 | For embryo-pool frame |
Silicon oil | Shin-Etsu Chemical, Co, Ltd. | FL-100-450CS | For embryo handling |
Sodium chloride | Nacalai Tesque, Inc. | 31320-05 | For EBR solution |
Sodium hypochlorite solution | FUJIFILM Wako Pure Chemical Corporation | 197-02206 | Undiluted and freshly prepared; for embryo breaching |
Sucrose | Nacalai Tesque, Inc. | 30404-45 | For CPA solution |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved