A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol outlines the use of a custom-designed recording device and electrodes to record local field potentials and investigate information flow in the mouse hippocampus and prefrontal cortex.
The technique of recording local field potentials (LFPs) is an electrophysiological method used to measure the electrical activity of localized neuronal populations. It serves as a crucial tool in cognitive research, particularly in brain regions like the hippocampus and prefrontal cortex. Dual LFP recordings between these areas are of particular interest as they allow the exploration of interregional signal communication. However, methods for performing these recordings are rarely described, and most commercial recording devices are either expensive or lack adaptability to accommodate specific experimental designs. This study presents a comprehensive protocol for performing dual-electrode LFP recordings in the mouse hippocampus and the prefrontal cortex to investigate the effects of antipsychotic drugs and potassium channel modulators on LFP properties in these areas. The technique enables the measurement of LFP properties, including power spectra within each brain region and coherence between the two. Additionally, a low-cost, custom-designed recording device has been developed for these experiments. In summary, this protocol provides a means to record signals with high signal-to-noise ratios in different brain regions, facilitating the investigation of interregional information communication within the brain.
Local field potentials (LFPs) refer to the electrical activity recorded from the extracellular space, reflecting the collective activity of a localized group of neurons. They exhibit a diverse range of frequencies, spanning from slow waves at 1 Hz to fast oscillations at 100 Hz or 200 Hz. Specific frequency bands have been associated with cognitive functions such as learning, memory, and decision making1,2. Changes in LFP properties have been used as biomarkers for various neurological disorders, including dementia and schizophrenia3,4. Analyzing LFP recordings can offer valuable insights into the underlying pathological mechanisms associated with these conditions and potential therapeutic strategies.
Dual LFP recording is a technique used to measure localized electrical activity within and between two specific brain regions. This technique provides a valuable opportunity to investigate the intricate neural dynamics and signal communication occurring within and between distinct brain regions. Prior studies have revealed that detecting alterations in the neuronal properties of individual brain regions can be complex, but changes in interregional cortical communication can be observed5,6. Therefore, the utilization of dual LFP recording offers a potent means to address this issue.
Hippocampal-prefrontal connectivity plays a crucial role in modulating cognitive functions, and dysfunction has been linked to various neurological disorders7,8. Dual electrode recordings of these regions can provide information about these interactions. Unfortunately, there is limited information available on methods for performing dual electrode LFP recordings between these areas. Moreover, commercially available recording devices are generally expensive and lack adaptability to specific experimental designs. The conventional method for recording LFPs involves using a shielded cable to connect the recording device to electrodes implanted in an animal's brain. However, this approach is susceptible to motion artifacts and environmental noise, impacting the quality and reliability of the recorded signals.
This protocol describes a comprehensive procedure for performing dual-electrode LFP recordings in the mouse hippocampus and prefrontal cortex, using a low-cost custom-designed headstage that can be placed on the animal's head. These methods enable researchers to investigate region-specific oscillatory patterns within two discrete cerebral regions and explore interregional information exchange and connectivity between these areas.
This study was approved by the Florey Animal Ethics Committee (The University of Melbourne, No. 22-025UM) in accordance with the Australian code for the care and use of animals for scientific purposes. C57BL/6 male mice (8 weeks), obtained from the Animal Resources Centre (Australia), were used for the present study.
1. Headstage design and fabrication
NOTE: The headstage PCB board is a compact 14 mm x 12 mm four-layer board designed to be placed directly on the animal's head. It utilizes a commercial amplifier chip (see Table of Materials), and all design and Gerber files are available online (GitHub link: https://github.com/dechuansun/Intan-headstage/tree/main/pcbway).
2. Electrode fabrication
3. Surgical procedure
4. Postoperative care
5. Recording procedure
The results shown here demonstrate the effects of several drugs on local field potentials (LFPs) properties tested in four cohorts of C57BL/6 male mice (n = 8 for each cohort; age: 8 weeks; weight: 24.0 ± 0.42 g). The drugs tested included the antipsychotic drug clozapine, the potassium channel modulators 4-Aminopyridine (4-AP), and retigabine, as well as the control vehicle saline.
As shown in Figure 1, the mouse was placed in a small recording chamber and L...
The protocol presented here outlines the procedure for constructing a customized headstage specifically designed for the simultaneous recording of dual local field potentials (LFPs) in the hippocampus (HIP) and the prefrontal cortex (PFC). The detailed steps provided in this protocol offer sufficient information for researchers to thoroughly examine signal communication both within each region and between the HIP and PFC.
The custom-designed headstage utilizes a commercial amplifier chip. Whil...
The authors have nothing to disclose.
This work was supported by the Royal Melbourne Hospital Neuroscience Foundation (A2087).
Name | Company | Catalog Number | Comments |
Brass tube | Albion Alloys, USA | Inside diameter of 0.45 mm | |
Carprofen | Rimadyl, Pfizer Animal Health | ||
Commercial amplifier chip | Intantech | RHD 2132 | |
Control board | Intantech | RHD recording system | |
Dental cement | Paladur | ||
Heat shrinks | Panduit | 0.8 mm diameter | |
M1.2 stainless steel screw | Watch tools | Clock and watch screw | |
Multichannel socket connector | Harwin, AU | 1.27 mm pitch, PCB socket | |
PFA-coated tungsten wires | A-M SYSTEMS, USA | Inside diameter of 150 µm | |
Phosphoric acid-based flux | Chip Quik | CQ4LF-0.5 | |
Recording software | Intantech | RHX recording software | |
Stereotactic Frame | World Precision Instruments | Mouse stereotactic instrument | |
Super glue | UHU | Ultra fast |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved