Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes the analysis of multiclass pesticide residues in avocado varieties using the Quick-Easy-Cheap-Effective-Rugged-Safe (QuEChERS) method with ammonium formate, followed by gas chromatography-tandem mass spectrometry.

Abstract

Gas chromatography (GC) tandem mass spectrometry (MS/MS) stands as a preeminent analytical instrument extensively employed for the surveillance of pesticide residues in food. Nevertheless, these methods are vulnerable to matrix effects (MEs), which can potentially affect accurate quantification depending on the specific combination of analyte and matrix. Among the various strategies to mitigate MEs, matrix-matched calibration represents the prevailing approach in pesticide residue applications due to its cost-effectiveness and straightforward implementation. In this study, a total of 45 representative pesticides were analyzed in three different varieties of avocado (i.e., Criollo, Hass, and Lorena) using the Quick-Easy-Cheap-Effective-Rugged-Safe (QuEChERS) method with ammonium formate and GC-MS/MS.

For this purpose, 5 g of the avocado sample was extracted with 10 mL of acetonitrile, and then 2.5 g of ammonium formate was added to induce phase separation. Subsequently, the supernatant underwent a cleanup process via dispersive solid-phase extraction employing 150 mg of anhydrous MgSO4, 50 mg of primary-secondary amine, 50 mg of octadecylsilane, 10 mg of graphitized carbon black, and 60 mg of a zirconium oxide-based sorbent (Z-Sep+). The GC-MS/MS analysis was successfully performed in less than 25 min. Rigorous validation experiments were carried out to assess the performance of the method. The examination of a matrix-matched calibration curve for each variety of avocado revealed that the ME remained relatively consistent and less than 20% (considered as a soft ME) for most pesticide/variety combinations. Furthermore, the method´s limits of quantification were lower than 5 µg/kg for all three varieties. Finally, the recovery values for most pesticides fell within the acceptable range of 70-120%, with relative standard deviation values below 20%.

Introduction

In chemical analysis, the matrix effect (ME) can be defined in various ways, but a widely accepted general definition is as follows: it refers to the change in the signal, particularly a change in the slope of the calibration curve when the sample matrix or portion of it is present during the analysis of a specific analyte. As a critical aspect, ME necessitates thorough investigation during the validation process of any analytical method, as it directly affects the accuracy of quantitative measurement for the target analytes1. Ideally, a sample pretreatment procedure should be selective enough to avoid extracting any components from the sample ....

Protocol

1. Preparation of the stock and working solutions

NOTE: For safety reasons, it is advisable to wear nitrile gloves, a laboratory coat, and safety glasses throughout the protocol.

  1. Prepare individual stock solutions of each of the 45 commercial pesticide standards (see Table of Materials) at approximately 1,000 mg/L in acetonitrile in 10 mL volumetric flasks.
  2. Combine the above individual stock solutions to prepare a 400 mg/L stock solution .......

Representative Results

Comprehensive validation of the analytical method was conducted according to SANTE/11312/2021 guidelines6, encompassing assessments of linearity, ME, recovery, and repeatability.

For the linearity assessment, matrix-matched calibration curves were constructed using spiked blank samples at multiple concentration levels (ranging from 5 to 600 µg/kg). The determination coefficients (R2) for most of the selected pesticides were found to be higher than or equ.......

Discussion

The primary limitation associated with matrix-matched calibration arises from the use of blank samples as calibration standards. This leads to an augmented number of samples to be processed for analysis and an increased injection of matrix components in each analytical sequence, potentially leading to higher instrument maintenance demands. Nonetheless, this strategy is more suitable than standard addition, which would generate a much larger number of samples to be injected due to the need to perform a calibration curve f.......

Acknowledgements

We would like to thank EAN University and the University of La Laguna.

....

Materials

NameCompanyCatalog NumberComments
3-Ethoxy-1,2-propanediolSigma Aldrich260428-1G
AcetonitrileMerk1006652500
Ammonium formateSigma Aldrich156264-1KG
AOAC 20i/s autosamplerShimadzu221-723115-58
Automatic shaker MX-T6-PROSCILOGEX8.23222E+11
BalanceOHAUSPA224
Centrifuge tubes, 15 mLNest601002
Centrifuge tubes, 2 mLEppendorf4610-1815
Centrifuge tubes, 50 mLNest602002
Centrifuge Z206AMERMLE6019500118
Choper 2LOster2114111
Column SH-Rxi-5sil MS, 30 m x 0.25 mm, 0.25 µmShimadzu221-75954-30MS GC column 
Dispensette 5-50 mLBRAND4600361
DSC-18Sigma Aldrich52600-U
D-SorbitolSigma Aldrich240850-5G
Ethyl acetateMerk1313181212
GCMS-TQ8040 Shimadzu211552
Graphitized carbon blackSigma Aldrich57210-U
Injection syringeShimadzuLC2213461800
L-Gulonic acid γ-lactoneSigma Aldrich310301-5G
Linner splitlessShimadzu221-4887-02
Magnesium sulfate anhydrusSigma AldrichM7506-2KG
MethanolPanreac131091.12.12
Milli-Q ultrapure (type 1) waterMilliporeF4H4783518
Pipette tips 10 - 100 µLBiologix200010
Pipette tips 100 - 1000 µLBrand541287
Pipette tips 20 - 200 µLBrand732028
Pipettes PasteurNORMAX5426023
Pippette Transferpette S variabel 10 - 100 µLBRAND704774
Pippette Transferpette S variabel 100 - 1000 µLBRAND704780
Pippette Transferpette S variabel 20 - 200 µLSCILOGEX7.12111E+11
Primary-secondary amineSigma Aldrich52738-U
Shikimic acidSigma AldrichS5375-1G
Syringe Filter PTFE/L 25 mm, 0.45 µmNORMAXFE2545I
Triphenyl phosphate (QC)Sigma Aldrich241288-50G
Vials with fused-in insertSigma Aldrich29398-U
Z-SEP+Sigma Aldrich55299-Uzirconium oxide-based sorbent
PesticidesCAS registry number
4,4´-DDDSigma Aldrich35486-250MG72-54-8
4,4´-DDESigma Aldrich35487-100MG72-55-9
4,4´-DDTSigma Aldrich31041-100MG50-29-3
AlachlorSigma Aldrich45316-250MG15972-60-8
AldrinSigma Aldrich36666-25MG309-00-2
AtrazineSigma Aldrich45330-250MG-R1912-24-9
Atrazine-d5 (IS)Sigma Aldrich34053-10MG-R163165-75-1
BuprofezinSigma Aldrich37886-100MG69327-76-0
CarbofuranSigma Aldrich32056-250-MG1563-66-2
ChlorprophamSigma Aldrich45393-250MG101-21-3
ChlorpyrifosSigma Aldrich45395-100MG2921-88-2
Chlorpyrifos-methylSigma Aldrich45396-250MG5598-13-0
DeltamethrinSigma Aldrich45423-250MG52918-63-5
DichloranSigma Aldrich45435-250MG99-30-9
DichlorvosSigma Aldrich45441-250MG62-73-7
DieldrinSigma Aldrich33491-100MG-R60-57-1
DiphenylamineSigma Aldrich45456-250MG122-39--4
Endosulfan ASigma Aldrich32015-250MG115-29-7
EndrinSigma Aldrich32014-250MG72-20-8
EPNSigma Aldrich36503-100MG2104-64-5
EsfenvalerateSigma Aldrich46277-100MG66230-04-4
EthionSigma Aldrich45477-250MG563-12-2
FenamiphosSigma Aldrich45483-250MG22224-92-6
FenitrothionSigma Aldrich45487-250MG122-14-5
FenthionSigma Aldrich36552-250MG55-38-9
FenvalerateSigma Aldrich45495-250MG51630-58-1
HCBSigma Aldrich45522-250MG118-74-1
IprodioneSigma Aldrich36132-100MG36734-19-7
LindaneSigma Aldrich45548-250MG58-89-9
MalathionSigma Aldrich36143-100MG121-75-5
MetalaxylSigma Aldrich32012-100MG57837-19-1
MethidathionSigma Aldrich36158-100MG950-37-8
MyclobutanilSigma Aldrich34360-100MG88671-89-0
OxyfluorfenSigma Aldrich35031-100MG42874-03-3
Parathion-methylSigma Aldrich36187-100MG298-00-0
PenconazolSigma Aldrich36189-100MG66246-88-6
Pirimiphos-methylSigma Aldrich32058-250MG29232-93-7
PropiconazoleSigma Aldrich45642-250MG60207-90-1
PropoxurSigma Aldrich45644-250MG114-26-1
PropyzamideSigma Aldrich45645-250MG23850-58-5
PyriproxifenSigma Aldrich34174-100MG95737-68-1
Tolclofos-methylSigma Aldrich31209-250MG5701804-9
TriadimefonSigma Aldrich45693-250MG43121-43-3
TriflumizoleSigma Aldrich32611-100MG68694-11-1
α-HCHSigma Aldrich33377-50MG319-86-8
β-HCHSigma Aldrich33376-100MG319-85-7

References

  1. Raposo, F., Barceló, D. Challenges and strategies of matrix effects using chromatography-mass spectrometry: An overview from research versus regulatory viewpoints. Trends Analyt Chem. 134, 116068 (2021).
  2. Rahman, M. M., Abd El-Aty, A. M., Shim, J. H.

Explore More Articles

QuEChERSGas Chromatography tandem Mass Spectrometry GC MS MSPesticide ResiduesAvocadoMatrix EffectsMethod Validation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved