A subscription to JoVE is required to view this content. Sign in or start your free trial.
A derivação de linhagens do sistema nervoso entérico (ENS) de células-tronco pluripotentes humanas (hPSC) fornece uma fonte escalável de células para estudar o desenvolvimento e a doença do ENS e para usar na medicina regenerativa. Aqui, é apresentado um protocolo in vitro detalhado para derivar neurônios entéricos de hPSCs usando condições de cultura quimicamente definidas.
O sistema nervoso entérico humano, ENS, é uma grande rede de tipos de células gliais e neuronais com notável diversidade de neurotransmissores. O ENS controla a motilidade intestinal, a secreção enzimática e a absorção de nutrientes e interage com o sistema imunológico e o microbioma intestinal. Consequentemente, os defeitos de desenvolvimento e adquiridos do SNE são responsáveis por muitas doenças humanas e podem contribuir para os sintomas da doença de Parkinson. Limitações em sistemas de modelos animais e acesso ao tecido primário representam desafios experimentais significativos em estudos do ENS humano. Aqui, um protocolo detalhado é apresentado para a derivação in vitro eficaz das linhagens ENS de células-tronco pluripotentes humanas, hPSC, usando condições de cultura definidas. Nosso protocolo começa com a diferenciação direcionada de hPSCs em células da crista neural entérica em 15 dias e produz diversos subtipos de neurônios entéricos funcionais em 30 dias. Essa plataforma fornece um recurso escalável para estudos de desenvolvimento, modelagem de doenças, descoberta de medicamentos e aplicações regenerativas.
O sistema nervoso entérico (SNE) é o maior componente do sistema nervoso periférico. O ENS contém mais de 400 milhões de neurônios localizados no trato gastrointestinal e controlam quase todas as funções do intestino1. A compreensão molecular do desenvolvimento e função do SNE e seus defeitos nas neuropatias entéricas requer acesso a uma fonte confiável e autêntica de neurônios entéricos. O acesso ao tecido primário humano é limitado e os modelos animais não conseguem recapitular os principais fenótipos da doença em muitas neuropatias entéricas. A tecnologia de células-tronco pluripotentes humanas (hPSC) provou ser extremamente benéfica no forn....
1. Preparação de mídia
NOTA: As concentrações mencionadas em todo o protocolo são concentrações finais dos componentes do meio. Preparar todos os meios em condições estéreis numa coifa de fluxo laminar e conservar a 4 °C no escuro. Use dentro de 2 semanas.
Este protocolo fornece um método para derivar crista neural entérica e neurônios entéricos de hPSCs usando condições de cultura quimicamente definidas ( Figura 1A-B ). A geração de neurônios de alta qualidade depende de uma etapa eficiente de indução da crista neural entérica. Isso pode ser avaliado visualmente verificando a morfologia das esferas flutuantes que devem parecer redondas com superfícies lisas com um tamanho de aproximadamente 0,1 - 0,4 mm, como vis.......
O protocolo de diferenciação descrito aqui fornece um método in vitro robusto para obter neurônios entéricos de hPSCs dentro de 30-40 dias (Figura 1E) e glia entérica expressando proteína glial fibrilar ácida, GFAP e SOX10 em culturas mais antigas (> dia 55) 13 , 14 , 19 , 22 . Esses neurônios e glia são induzidos pela diferenciação gradual de .......
Os autores não têm nada a divulgar.
O trabalho foi apoiado por doações do Programa UCSF para Pesquisa Biomédica Inovadora e da Fundação Sandler, March of Dimes concessão nº 1-FY18-394 e 1DP2NS116769-01, o Prêmio Novo Inovador do Diretor do NIH (DP2NS116769) para F.F. e o Instituto Nacional de Diabetes e Doenças Digestivas e Renais (R01DK121169) para F.F., H.M. é apoiado pela bolsa de pós-doutorado da Fundação Larry L. Hillblom, bolsa NIH T32-DK007418 e bolsa de pós-doutorado independente do Programa UCSF para Pesquisa Biomédica Inovadora.
....Name | Company | Catalog Number | Comments |
Ascorbic acid | Sigma-Aldrich | A5960 | |
B27 supplement (serum free, minus vitamin A) | Gibco | 12587-010 | |
Basement membrane matrix, Geltrex | Gibco | A14133-2 | |
BMP4 | R&D systems | 314-BP | |
Cell culture centrifuge | Eppendorf, model no. 5810R | 02262501 | |
Cell detachment solution, Accutase | Stemcell Technologies | 07920 | |
CHIR99021 | Tocris | 4423 | |
Conical tubes | USA scientific | 1475-0511, 1500-1211 | |
Differentiation base medium, Essential 6 | Life Technologies | A1516401 | |
DMEM/F-12 no glutamine | Life Technologies | 21331020 | |
EDTA | Corning | MT-46034CI | |
Feeder-free hPSC maintenance medium, Essential 8 Flex Medium Kit | Life Technologies | A2858501 | |
FGF2 | R&D systems | 233-FB/CF | |
Fibronectin | Corning | 356008 | |
GDNF | Peprotech | 450-10 | |
Hemocytometer | Hausser Scientific | 1475 | |
Human pluripotent stem cells, H9 ESC | WiCell | RRID: CVCL_1240 | |
Incubator with controlled humidity, temperature and CO2 | Thermo Fisher Scientific | Herralcell 150i | |
Inverted microscope | Thermo Fisher Scientific | EVOS FL | |
Laminar flow hood | Thermo Fisher Scientific | 1300 series class II, type A2 | |
Laminin | Cultrex | 3400-010 | |
L-glutamine supplement, Glutagro | Corning | 25-015-CI | |
MEM NEAAs | Corning | 25-025-CI | |
Multiwell plates, Falcon | BD | 353934, 353075 | |
N-2 Supplement | CTS | A1370701 | |
Neurobasal Medium | Life Technologies | 21103049 | |
PBS (Ca and Mg free) | Life Technologies | 10010023 | |
Pipette filler | Eppendorf | Z768715-1EA | |
Pipette tips | USA scientific | 1111-2830 | |
Pipettes | Fisherbrand | 13-678-11E, 13-678-11F | |
PO | Sigma-Aldrich | P3655 | |
polymer coverslip bottom imaging plates, ibidi | ibidi | 81156 | |
RA | Sigma-Aldrich | R2625 | |
SB431542 | R&D systems | 1614 | |
Trypan blue stain, 0.4% | Thermo Fisher Scientific | 15250-061 | |
Ultra-low attachment plates | Fisher Scientific | 07-200-601 | |
Y-27632 dihydrochloride | R&D systems | 1254 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved