A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we demonstrate how to combine transfection of primary hippocampal rodent neurons with live-cell confocal imaging to analyze pathological protein-induced effects on axonal transport and identify mechanistic pathways mediating these effects.
Bidirectional transport of cargos along the axon is critical for maintaining functional synapses, neural connectivity, and healthy neurons. Axonal transport is disrupted in multiple neurodegenerative diseases, and projection neurons are particularly vulnerable because of the need to transport cellular materials over long distances and sustain substantial axonal mass. Pathological modifications of several disease-related proteins negatively affect transport, including tau, amyloid-β, α-synuclein, superoxide dismutase, and huntingtin, providing a potential common mechanism by which pathological proteins exert toxicity in disease. Methods to study these toxic mechanisms are necessary to understand neurodegenerative disorders and identify potential therapeutic interventions.
Here, cultured primary rodent hippocampal neurons are co-transfected with multiple plasmids to study the effects of pathological proteins on fast axonal transport using live-cell confocal imaging of fluorescently-tagged cargo proteins. We begin with the harvest, dissociation, and culturing of primary hippocampal neurons from rodents. Then, we co-transfect the neurons with plasmid DNA constructs to express fluorescent-tagged cargo protein and wild-type or mutant tau (used as an exemplar of pathological proteins). Axons are identified in live cells using an antibody that binds an extracellular domain of neurofascin, an axon initial segment protein, and an axonal region of interest is imaged to measure fluorescent cargo transport.
Using KymoAnalyzer, a freely available ImageJ macro, we extensively characterize the velocity, pause frequency, and directional cargo density of axonal transport, all of which may be affected by the presence of pathological proteins. Through this method, we identify a phenotype of increased cargo pause frequency associated with the expression of pathological tau protein. Additionally, gene-silencing shRNA constructs can be added to the transfection mix to test the role of other proteins in mediating transport disruption. This protocol is easily adaptable for use with other neurodegenerative disease-related proteins and is a reproducible method to study the mechanisms of how those proteins disrupt axonal transport.
Neurons depend on the bidirectional transport of cargo along the axon to maintain functional synapses and neural connectivity. Axonal transport deficits are thought to be critical contributors to the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease (AD) and other tauopathies, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease1,2,3. Indeed, pathological modifications to several disease-related proteins negatively affect transport (reviewed in 4). Developing methods to investigate the....
These protocols were approved by the Michigan State University Institutional Animal Care and Use Committee. This protocol has been successfully applied to Tau Knockout mice in the C57BL/6J background and wild-type Sprague Dawley rats. Other strains should be acceptable as well.
1. Primary hippocampal neuron harvest
Using these methods, we characterized axonal transport in the presence of wild-type or disease-related forms of tau protein to examine potential mechanisms of pathological tau-induced neurotoxicity in disease12,13. The KymoAnalyzer software calculates and pools a variety of different parameters from all kymographs within a given folder. Transport rates are calculated only when cargo is in motion (segmental velocity) as well as the overall rate, including pauses (.......
There is growing evidence that multiple pathological proteins associated with a variety of neurodegenerative disorders disrupt fast axonal transport in neurons. This represents a potential common mechanism of neurotoxicity across these diseases. To better understand the process by which these proteins disrupt transport, we need tools and models that allow us to address specific questions. The method described here allows the examination of mechanisms engaged by pathological proteins to negatively affect cargo transport i.......
We thank Chelsea Tiernan and Kyle Christensen for their efforts in developing and optimizing aspects of these protocols. This work was supported by National Institutes of Health (NIH) Grants R01 NS082730 (N.M.K.), R01 AG044372 (N.M.K.), R01 AG067762 (N.M.K.), and F31 AG074521 (R.L.M.); NIH/National Institute on Aging, Michigan Alzheimer's Disease Research Center Grant 5P30AG053760 (N.M.K. and B.C.); Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Alzheimer's Research Program Award W81XWH-20-1-0174 (B.C.); Alzheimer's Association Research Grants 20-682085 (B.C.); and the Secchia Family Foundation (N.M.K.).
....Name | Company | Catalog Number | Comments |
0.4% Trypan blue | Gibco | 15250-061 | |
1.7 mL microcentrifuge tubes | DOT | RN1700-GMT | |
2.5% trypsin | Gibco | 15090-046 | |
3 mL syringe with 21 G needle | Fisher | 14-826-84 | |
10 mL plastic syringe | Fisher | 14-823-2A | |
14 G needle | Fisher | 14-817-203 | |
15 G needle | Medline | SWD200029Z | |
16 G needle | Fisher | 14-817-104 | |
18 G needle | Fisher | 14-840-97 | |
22 G needle | Fisher | 14-840-90 | |
32% paraformaldehyde | Fisher | 50-980-495 | |
AlexaFluor 647 goat anti-rabbit IgG (H+L) | Invitrogen | A21244 | RRID:AB_2535813 |
Amphotericin B | Gibco | 15290-026 | |
Arruga Micro Embryonic Capsule Forceps, Curved; 4" | Roboz | RS-5163 | autoclave |
B-27 Supplement (50x), serum free | Gibco | A3582801 | |
BioCoat 24-well Poly D lysine plates | Fisher | 08-774-124 | |
boric acid | Sigma | B6768-1KG | |
Calcium chloride | Sigma | C7902 | |
Castroviejo 3 1/2" Long 8 x 0.15 mm Angle Sharp Scissors | Roboz | RS-5658 | autoclave |
Cell counting device | automatic or manual | ||
Confocal microscope with live cell chamber attachment | |||
Confocal imaging software | |||
D-(+)-glucose | Sigma | G7528 | |
DNase I (Worthington) | Fisher | NC9185812 | |
Dulbecco's Phosphate Buffered Saline | Gibco | 14200-075 | |
EGTA | Fisher | O2783-100 | |
Fatal-Plus Solution | Vortech Pharmaceuticals, LTD | NDC 0298-9373-68 | sodium pentobarbital; other approved methods of euthanasia may be used |
Fetal bovine serum | Invitrogen | 16000044 | |
Gentamicin Reagent Solution | Gibco | 15710-072 | |
GlutaMAX | Gibco | 35050-061 | glutamine substitute |
Hanks' Balanced Salt Solution | Gibco | 24020-117 | |
ImageJ version 1.51n | ImageJ | Life-Line version 2017 May 30: https://imagej.net/software/fiji/downloads | |
KymoAnalyzer (version 1.01) | Encalada Lab | Package includes all 6 macros: https://www.encalada.scripps.edu/kymoanalyzer | |
Lipofectamine 3000 | Invitrogen | 100022050 | Use with P3000 transfection enhancer reagent |
Magnesium chloride | Fisher | AC223211000 | |
MES hydrate | Sigma | M8250 | |
Micro Dissecting Scissors 3.5" Straight Sharp/Sharp | Roboz | RS-5910 | autoclave |
Neurobasal Plus medium | Gibco | A3582901 | |
Neurofascin (A12/18) Mouse IgG2a | UC Davis/NIH NeuroMab | 75-172 | RRID:AB_2282826; 250 ng/mL; Works in rat neurons, NOT in mouse neurons |
Neurofascin 186 (D6G60) Rabbit IgG | Cell Signaling | 15034 | RRID:AB_2773024; 500 ng/mL; Works in mouse neurons, we have not tested in rat neurons |
newborn calf serum | Gibco | 16010-167 | |
Opti-MEM | Gibco | 31985-062 | |
P3000 | Invitrogen | 100022057 | |
Petri dish, 100 x 10 mm glass | Fisher | 08-748B | For dissection; autoclave |
Petri dish, 100 x 20 mm glass | Fisher | 08-748D | To place uterine horns in; autoclave |
Poly-D-lysine | Sigma | P7886-100MG | |
Polypropylene conical centrifuge tubes (15 mL) | Fisher | 14-955-238 | |
Polypropylene conical centrifuge tubes (50 mL) | Fisher | 14-955-238 | |
Potassium chloride | Fisher | P217-500 | |
Sodium acetate | Sigma | S5636 | |
sodium borate decahydrate | VWR | MK745706 | |
Straight-Blade Operating Scissors Blunt/Sharp | Fisher | 13-810-2 | autoclave |
Syringe Filters, 0.22 µm | VWR | 514-1263 | |
Thumb dressing forceps, serrated, 4.5" | Roboz | RS-8100 | autoclave |
µ-Slide 4 Well Glass Bottom | Ibidi | 80427 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved