A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Medicine
* These authors contributed equally
We aimed to delve into the mechanisms underpinning Jiawei Shengjiang San's (JWSJS) action in treating diabetic nephropathy and deploying network pharmacology. Employing network pharmacology and molecular docking techniques, we predicted the active components and targets of JWSJS and constructed a meticulous "drug-component-target" network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were utilized to discern the therapeutic pathways and targets of JWSJS. Autodock Vina 1.2.0 was deployed for molecular docking verification, and a 100-ns molecular dynamics simulation was conducted to affirm the docking results, followed by in vivo animal verification. The findings revealed that JWSJS shared 227 intersecting targets with diabetic nephropathy, constructing a protein-protein interaction network topology. KEGG enrichment analysis denoted that JWSJS mitigates diabetic nephropathy by modulating lipids and atherosclerosis, the PI3K-Akt signaling pathway, apoptosis, and the HIF-1 signaling pathway, with mitogen-activated protein kinase 1 (MAPK1), MAPK3, epidermal growth factor receptor (EGFR), and serine/threonine-protein kinase 1 (AKT1) identified as collective targets of multiple pathways. Molecular docking asserted that the core components of JWSJS (quercetin, palmitoleic acid, and luteolin) could stabilize conformation with three pivotal targets (MAPK1, MAPK3, and EGFR) through hydrogen bonding. In vivo examinations indicated notable augmentation in body weight and reductions in glycated serum protein (GSP), low-density lipoprotein cholesterol (LDL-C), uridine triphosphate (UTP), and fasting blood glucose (FBG) levels due to JWSJS. Electron microscopy coupled with hematoxylin and eosin (HE) and Periodic acid-Schiff (PAS) staining highlighted the potential of each treatment group in alleviating kidney damage to diverse extents, exhibiting varied declines in p-EGFR, p-MAPK3/1, and BAX, and increments in BCL-2 expression in the kidney tissues of the treated rats. Conclusively, these insights suggest that the protective efficacy of JWSJS on diabetic nephropathy might be associated with suppressing the activation of the EGFR/MAPK3/1 signaling pathway and alleviating renal cell apoptosis.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved