The manuscript presents a minimally invasive nerve and muscle-sparing surgical protocol to decompress occipital nerves aiming to improve occipital neuralgia.
Occipital neuralgia (ON) stands out as one of the most distressing forms of headache disorders, distinguished by persistent pain at the base of the skull, recurring occipital headaches, and scalp dysesthesia or allodynia. ON is notorious for its unrelenting agony, severely impacting the lives of those afflicted. The incessant pain, often radiating upward from the base of the skull to the scalp, can be profoundly debilitating. Patients frequently endure excruciating occipital headaches, making even routine daily activities a formidable challenge. The added burden of scalp dysesthesia or allodynia, where seemingly innocuous stimuli elicit severe pain, compounds the suffering. This neuralgia primarily arises from the mechanical compression exerted on the occipital nerves along the nuchal line. In this paper, we present a minimally invasive nerve and muscle-preserving technique aimed at relieving this compression on the occipital nerves. Accurate diagnosis and effective treatment are paramount in providing relief for individuals battling this condition. Nerve blocks with local anesthesia have become a cornerstone of diagnosis, serving as both a confirmation of occipital neuralgia and a potential therapeutic intervention. These procedures offer crucial insights into the source of the pain while offering transient respite. However, the true breakthrough lies in the innovative technique we propose - a procedure that addresses the mechanical compression at the nuchal line, which is a prominent contributing factor to occipital neuralgia. By carefully decompressing the affected occipital nerves while preserving their integrity and surrounding muscle tissue, this minimally invasive approach offers patients a potential path to sustained relief. Remarkably, the procedure can be performed under local anesthesia, reducing the invasiveness of traditional surgeries and minimizing patient downtime.
Occipital neuralgia (ON) is a chronic headache condition causing persistent dull pain in the back of the head1. The pain, which differs from typical migraines, is often resistant to standard migraine treatments due to mechanical compression on the occipital nerves2, particularly along their course through the nuchal line3. On the other hand, surgical options may be effective but involve invasive procedures and extended recovery times4,5. We present here a novel approach to the occipital nerves, allowing for minimally invasive decompression, minimal downtime, and preservation of muscle and sensitive nerve branches6.
Diagnosing ON relies on targeted nerve blocks, which temporarily reduce pain and help pinpoint the exact area of nerve compression7, guiding surgical decompression8,9. Unlike typical migraine management, our approach targets the root mechanical cause of ON, providing a viable therapeutic option beyond medication.
Numerous clinical and anatomical studies have led to the occipital nerve decompression technique as described in2,3,10,11,12,13. Although this technique has been proven safe and effective, the advantages of the minimally invasive technique presented here include reduced patient morbidity, abbreviated postoperative recovery periods, and lesser risks of iatrogenic-induced pain due to potential neuroma formation. In particular, the preservation of neural and muscular structures contributes to prompt and favorable outcomes. The greater and lesser occipital nerves can be exposed and decompressed via the described approach. For the purpose of this paper, only greater occipital nerve decompression is described to improve occipital neuralgia, which is due to lesser occipital neuralgia. The third occipital nerve is responsible for rare cases of occipital neuralgia in our practice, which are addressed with a separate approach due to its medial localization. The described technique includes the systematic exploration of the passage of the greater occipital nerve through the semispinalis capitis which may represent a compression point. Further research and clinical validation are warranted to ascertain the full scope of its efficacy and safety.
The data collection was conducted as a retrospective quality assessment study and the analysis of the results was approved by the internal review board at University of Padua. All procedures were performed in accordance with the ethical standards of the national research committee and the 1964 Helsinki Declaration and its later amendments. All patients have signed an informed consent allowing the authors to anonymously use the retrospective data. For this study, 87 patients were included.
1. Selection of candidates
2. Nerve block procedure
3. Preparation of the instrumentation table
4. Patient preparation
5. Surgeon preparation
6. Surgical technique
7. Postoperative protocol
At 1 year after the surgical decompression, there was a noteworthy reduction in chronic pain days, with a substantial decrease from an initial average of 25 days to 4.3 days (p <0.01), reflecting an 80.5% reduction (a 5.8-fold decrease) in chronic pain frequency (Figure 1)6. Furthermore, the number of pain crisis days per month exhibited a remarkable decline, plummeting from 19 days to 3.7 days (p <0.01), signifying an 82.8% reduction (a 5.1-fold decrease) in the frequency of pain crises (Figure 1 and Figure 2)6.
Patients reported an average background pain intensity of 3.7 on a scale of 10 before surgery, which substantially improved to 0.7 (p <0.01) post-surgery, corresponding to an impressive 76.1% reduction (a 5.2-fold decrease) in background pain intensity6. Moreover, the peak pain intensity experienced during crises significantly diminished from 8.8/10 to 2.1/10 after surgery (p <0.01), reflecting a substantial 81.1% reduction (a 4.2-fold decrease) in peak pain intensity (Figure 1 and Figure 2)6.
Remarkably, there was a significant reduction in the utilization of all types of drugs, including NSAIDs, triptans, and disease-modifying drugs, following the surgical intervention6 (not shown).
Figure 1: Clinical outcome after minimally invasive surgical decompression. After surgical decompression, chronic pain days decreased 5.8x. The pain crisis days/month decreased 5.1x. Background pain intensity decreased after surgery 5.2x, and pain intensity peaks during crises decreased 4.2x. (*p <0.01, Two-tailed paired t tests, n=87). This figure has been modified from6. Please click here to view a larger version of this figure.
Figure 2: Illustration of the anatomy of the occipital area pre- and post-decompression. In the pre-decompression picture, the external layer of the nuchal aponeurosis covers the occipital nerves and blood vessels. After decompression, the greater occipital nerve and occipital artery are visible. Please click here to view a larger version of this figure.
Occipital neuralgia is one of the most debilitating forms of headaches, mainly due to the chronic pain that is unremitting. A study on the prevalence of facial pain in 2009, which is often used as a reference for occipital neuralgia, found an ON prevalence of 3.2 per 100,00014. These statistics largely underestimate the problem, knowing that ON is responsible for facial pain in only 8.3% of the cases and that up to 25% of the cases of emergency room admittance are for headaches due to occipital neuralgia15.
We find in our practice that ON alone or in combination with other migraines is one of the most prevalent forms of chronic headaches, possibly due to morbid posture with the neck in flexion in front of computers and smartphones several hours per day, sedentary lifestyle, and limited time outdoors.
The surgical approach outlined here offers a highly efficient means of accessing the occipital nerves under local anesthesia. Greater occipital neuralgia may coexist with lesser occipital neuralgia as these nerves have communicating branches and their territories overlap. By using the same surgical approach, both nerves can be explored and decompressed when indicated6. Patient acceptance of the procedure has been favorable, with an average duration of approximately 45 to 60 min required for completion per side.
The meticulous identification and preservation of nerve fibers constitute a hallmark of this approach. Thanks to the minimally invasive nature of the procedure that can be performed in local anesthesia, the operator assesses the efficacy of decompression at the end of the procedure by instructing the patient to engage in head movement and conversation, thereby ensuring the absence of residual compression points.
A crucial facet of this procedure lies in the emphasis on early and frequent head mobilization, conducted multiple times daily. This practice serves to deter the formation of adhesions between nerve fibers and the surgical scar, which may otherwise impede recovery.
It is essential to acknowledge that not all patients are suitable candidates for this technique. Notably, individuals with fragility or heightened anxiety levels may not tolerate the procedure comfortably under pure local anesthesia. In certain cases, patients may experience sudden discomfort, as even the slightest manipulation of an inflamed occipital nerve can trigger nerve firing. In these cases, local anesthesia is sprayed directly on the nerve fibers with immediate relief.
This surgical approach represents a less invasive alternative compared to previously proposed decompression techniques. Its capacity to spare both nerve and muscle fibers contributes to a notable reduction in complication rates. We posit that this minimally invasive, yet highly effective methodology will broaden the accessibility of surgical decompression as a definitive treatment option for occipital neuralgia, offering hope to a wider spectrum of patients.
The authors acknowledge the technical assistance of Alexandra Curchod, Yuliethe Martins, and the Filmatik Global team. This work was funded in its entirety by the Global Medical Institute.
Name | Company | Catalog Number | Comments |
30G Needle | 0.3x13 mm, BD Microlance 3, Spain | ||
Bipolar Forceps | McPerson, bipolar forceps, Erbe, Switzerland | 20195 | |
Chlorhexidine | Hibidil, Chlorhexidini digluconas 0.5 mg/mL, Switzerland | 120099 | |
dissection scissors | Jarit supercut, Integra Lifescience, USA | 323720 | |
Doppler | Dopplex DMX Digital Doppler, High Sensitivity 10MHz probe, Huntleigh Healthcare, Wales, United Kingdom | ||
Ethilon 5/0 Suture | Ethicon, USA | 698 G | |
Lidocaine ephinephrine 1% | Rapidocain 1% 10 mg/mL, Sintetica, Switzerland | ||
Lighted retractor | Electro Surgical Instrument Company, Rochester, NY | 08-0195 | |
Magnifying loops | Design for vision, USA | ||
Opsity spray | Smith & Nephew, USA | ||
Sterile gloves | Sempermed sintegra IR, Ireland | ||
Sterillium | Sterillium disinfectant, Switzerland | ||
Surgical blade n.15 | Carbon steel surgical blades, Swann-Morton, England) | 205 | |
Surgical drapes and gauzes | Halyard Universal pack, USA | 88761 | |
Surgical instruments | Bontempi medical Italy | ||
Surgical shaver | Carefusion, USA | ||
Syringe 5cc | BBraun, Omnifix Luer Lock Solo, Switzerland | ||
Triamcinolone 10mg | Triamcort depot 40 mg/mL, Zentiva Czech Republic |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved